Abstract
This review article focuses on the emerging role of tumor resident adipocytes. It provides in vitro and in vivo evidence that they are essential for cancer development/progression. In addition to systemic effects, their tumor-promoting impact is dependent on local functions, notably via a complex adipocyte cancer cell paracrine loop (ACCPL). Indeed, this event leads to dramatic phenotypic and/or functional modifications of both cell types as well as of the extracellular matrix. Adipocytes undergo delipidation leading to adipocytes/cancer-associated adipocytes/cancer-associated fibroblasts de-differentiation processes. In turn, cancer cell aggressiveness is exacerbated through increased proliferation, migration, and invasion properties. This is accompanied by intense tissue remodeling, conducting to the occurrence of the tumor stroma. The molecular pathways involved in ACCPL remain largely unknown. Nevertheless, several clues are starting to emerge. Moreover, obesity is currently a sign of increased risk and poor prognosis in human carcinomas. How adiposopathy might impact tumors and specifically the ACCPL is still under investigation. However, available experimental, epidemiological, and clinical data allow to draw some directions. Interestingly, there are numerous similarities between the ACCPL-induced and obesity-related molecular alterations. It might, therefore, be hypothesized that obesity provides a “constitutively active” local permissive environment for cancer cells. Improving our knowledge about ACCPL in both lean and obese patients remains a challenging task. Indeed, deciphering the cellular and molecular mechanisms behind ACCPL might provide new targets for improving diagnosis/prognosis and the design of innovative therapeutic strategies, and even, in case of obesity, for preventing cancer.
Acknowledgments
We thank Susan Chan for helpful discussions. This work was supported by funds from the Institut National de la Santé et de la Recherche Médicale, the Centre National de la Recherche Scientifique, the Association pour la Recherche sur le Cancer, the Institut National du Cancer (PL-BIO ADIPOK 2011–2013), and the Ligue Nationale Française contre le Cancer (Equipe Labellisée 2013; Comités du Haut-Rhin et du Bas-Rhin). There is no a conflict of interest.
References
1. Nieman KM, Romero IL, Van Houten B, Lengyel E. Adipose tissue and adipocytes support tumorigenesis and metastasis. Biochim Biophys Acta 2013;1831:1533–41.10.1016/j.bbalip.2013.02.010Suche in Google Scholar
2. Motrescu ER, Rio MC. Cancer cells, adipocytes and matrix metalloproteinase 11: a vicious tumor progression cycle. Biol Chem 2008;389:1037–41.10.1515/BC.2008.110Suche in Google Scholar
3. Hefetz-Sela S, Scherer PE. Adipocytes: impact on tumor growth and potential sites for therapeutic intervention. Pharmacol Ther 2013;138:197–210.10.1016/j.pharmthera.2013.01.008Suche in Google Scholar
4. Tan J, Buache E, Chenard MP, Dali-Youcef N, Rio MC. Adipocyte is a non-trivial, dynamic partner of breast cancer cells. Int J Dev Biol 2011;55:851–9.10.1387/ijdb.113365jtSuche in Google Scholar
5. Vona-Davis L, Rose DP. Adipokines as endocrine, paracrine, and autocrine factors in breast cancer risk and progression. Endocr Relat Cancer 2007;14:189–206.10.1677/ERC-06-0068Suche in Google Scholar
6. Andarawewa KL, Motrescu ER, Chenard MP, Gansmuller A, Stoll I, Tomasetto C, Rio MC. Stromelysin-3 is a potent negative regulator of adipogenesis participating to cancer cell-adipocyte interaction/crosstalk at the tumor invasive front. Cancer Res 2005;65:10862–71.10.1158/0008-5472.CAN-05-1231Suche in Google Scholar
7. Dirat B, Bochet L, Dabek M, Daviaud D, Dauvillier S, Majed B, Wang YY, Meulle A, Salles B, Le Gonidec S, Garrido I, Escourrou G, Valet P, Muller C. Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res 2011;71:2455–65.10.1158/0008-5472.CAN-10-3323Suche in Google Scholar
8. Hennighausen L, Robinson GW. Signaling pathways in mammary gland development. Dev Cell 2001;1:467–75.10.1016/S1534-5807(01)00064-8Suche in Google Scholar
9. Bouloumie A, Sengenes C, Portolan G, Galitzky J, Lafontan M. Adipocyte produces matrix metalloproteinases 2 and 9: involvement in adipose differentiation. Diabetes 2001;50: 2080–6.10.2337/diabetes.50.9.2080Suche in Google Scholar PubMed
10. Meng L, Zhou J, Sasano H, Suzuki T, Zeitoun KM, Bulun SE. Tumor necrosis factor alpha and interleukin 11 secreted by malignant breast epithelial cells inhibit adipocyte differentiation by selectively down-regulating CCAAT/enhancer binding protein alpha and peroxisome proliferator-activated receptor gamma: mechanism of desmoplastic reaction. Cancer Res 2001;61:2250–5.Suche in Google Scholar
11. Bochet L, Lehuede C, Dauvillier S, Wang YY, Dirat B, Laurent V, Dray C, Guiet R, Maridonneau-Parini I, Le Gonidec S, Couderc B, Escourrou G, Valet P, Muller C. Adipocyte-derived fibroblasts promote tumor progression and contribute to the desmoplastic reaction in breast cancer. Cancer Res 2013;73:5657–68.10.1158/0008-5472.CAN-13-0530Suche in Google Scholar PubMed
12. Ronnov-Jessen L, Petersen OW, Koteliansky VE, Bissell MJ. The origin of the myofibroblasts in breast cancer. Recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. J Clin Invest 1995;95:859–73.10.1172/JCI117736Suche in Google Scholar PubMed PubMed Central
13. Tlsty TD. Stromal cells can contribute oncogenic signals. Semin Cancer Biol 2001;11:97–104.10.1006/scbi.2000.0361Suche in Google Scholar PubMed
14. Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 2012;21:309–22.10.1016/j.ccr.2012.02.022Suche in Google Scholar PubMed
15. Yamada S, Toda S, Shin T, Sugihara H. Effects of stromal fibroblasts and fat cells and an environmental factor air exposure on invasion of laryngeal carcinoma (HEp-2) cells in a collagen gel invasion assay system. Arch Otolaryngol Head Neck Surg 1999;125:424–31.10.1001/archotol.125.4.424Suche in Google Scholar PubMed
16. Manabe Y, Toda S, Miyazaki K, Sugihara H. Mature adipocytes, but not preadipocytes, promote the growth of breast carcinoma cells in collagen gel matrix culture through cancer-stromal cell interactions. J Pathol 2003;201:221–8.10.1002/path.1430Suche in Google Scholar PubMed
17. Tokuda Y, Satoh Y, Fujiyama C, Toda S, Sugihara H, Masaki Z. Prostate cancer cell growth is modulated by adipocyte-cancer cell interaction. BJU Int 2003;91:716–20.10.1046/j.1464-410X.2003.04218.xSuche in Google Scholar
18. Iyengar P, Combs TP, Shah SJ, Gouon-Evans V, Pollard JW, Albanese C, Flanagan L, Tenniswood MP, Guha C, Lisanti MP, Pestell RG, Scherer PE. Adipocyte-secreted factors synergistically promote mammary tumorigenesis through induction of anti-apoptotic transcriptional programs and proto-oncogene stabilization. Oncogene 2003;22:6408–23.10.1038/sj.onc.1206737Suche in Google Scholar PubMed
19. Edwards PA. The use of transplanted mammary gland to study cancer signalling pathways. Adv Exp Med Biol 2000;480:163–7.10.1007/0-306-46832-8_20Suche in Google Scholar PubMed
20. Elliott BE, Tam SP, Dexter D, Chen ZQ. Capacity of adipose tissue to promote growth and metastasis of a murine mammary carcinoma: effect of estrogen and progesterone. Int J Cancer 1992;51:416–24.10.1002/ijc.2910510314Suche in Google Scholar PubMed
21. Walter M, Liang S, Ghosh S, Hornsby PJ, Li R. Interleukin 6 secreted from adipose stromal cells promotes migration and invasion of breast cancer cells. Oncogene 2009;28:2745–55.10.1038/onc.2009.130Suche in Google Scholar PubMed PubMed Central
22. Rio MC. Tumor-associated fibroblasts and their matrix. Part II : Stromal cell diversity. In: Mueller MM, Fusenig NE, editors. The role of Cancer-Associated Adipocytes (CAA) in the dynamic interaction between the tumor and the host. Heidelberg, Germany: Springer Science, 2011; Chapter 6:111–23.Suche in Google Scholar
23. Kimijima I, Ohtake T, Sagara H, Watanabe T, Takenoshita S. Scattered fat invasion: an indicator for poor prognosis in premenopausal, and for positive estrogen receptor in postmenopausal breast cancer patients. Oncology 2000;59:25–30.10.1159/000055284Suche in Google Scholar PubMed
24. Yamaguchi J, Ohtani H, Nakamura K, Shimokawa I, Kanematsu T. Prognostic impact of marginal adipose tissue invasion in ductal carcinoma of the breast. Am J Clin Pathol 2008;130:382–8.10.1309/MX6KKA1UNJ1YG8VNSuche in Google Scholar PubMed
25. Sung MT, Eble JN, Cheng L. Invasion of fat justifies assignment of stage pT3a in prostatic adenocarcinoma. Pathology 2006;38:309–11.10.1080/00313020600820914Suche in Google Scholar PubMed
26. Bandyopadhyay S, Basturk O, Coban I, Thirabanjasak D, Liang H, Altinel D, Adsay NV. Isolated solitary ducts (naked ducts) in adipose tissue: a specific but underappreciated finding of pancreatic adenocarcinoma and one of the potential reasons of understaging and high recurrence rate. Am J Surg Pathol 2009;33:425–9.10.1097/PAS.0b013e3181908e42Suche in Google Scholar PubMed
27. Thomas DH, Verghese A, Kynaston HG, Griffiths DF. Analysis of the prognostic implications of different tumour margin types in renal cell carcinoma. Histopathology 2003;43:374–80.10.1046/j.1365-2559.2003.01721.xSuche in Google Scholar PubMed
28. Cho KS, Cho NH, Park SY, Cho SY, Choi YD, Chung BH, Yang SC, Hong SJ. Prognostic impact of peripelvic fat invasion in pT3 renal pelvic transitional cell carcinoma. J Korean Med Sci 2008;23:434–8.10.3346/jkms.2008.23.3.434Suche in Google Scholar PubMed PubMed Central
29. Thompson RH, Blute ML, Krambeck AE, Lohse CM, Magera JS, Leibovich BC, Kwon ED, Frank I, Cheville JC. Patients with pT1 renal cell carcinoma who die from disease after nephrectomy may have unrecognized renal sinus fat invasion. Am J Surg Pathol 2007;31:1089–93.10.1097/PAS.0b013e31802fb4afSuche in Google Scholar PubMed
30. Bedke J, Buse S, Pritsch M, Macher-Goeppinger S, Schirmacher P, Haferkamp A, Hohenfellner M. Perinephric and renal sinus fat infiltration in pT3a renal cell carcinoma: possible prognostic differences. BJU Int 2009;103:1349–54.10.1111/j.1464-410X.2008.08236.xSuche in Google Scholar PubMed
31. Puppa G, Maisonneuve P, Sonzogni A, Masullo M, Capelli P, Chilosi M, Menestrina F, Viale G, Pelosi G. Pathological assessment of pericolonic tumor deposits in advanced colonic carcinoma: relevance to prognosis and tumor staging. Mod Pathol 2007;20:843–55.10.1038/modpathol.3800791Suche in Google Scholar PubMed
32. McCready J, Arendt LM, Glover E, Iyer V, Briendel JL, Lyle SR, Naber SP, Jay DG, Kuperwasser C. Pregnancy-associated breast cancers are driven by differences in adipose stromal cells present during lactation. Breast Cancer Res 2014;16:R2.10.1186/bcr3594Suche in Google Scholar PubMed PubMed Central
33. Cinti S. The adipose organ at a glance. Dis Models Mech 2012;5:588–94.10.1242/dmm.009662Suche in Google Scholar PubMed PubMed Central
34. Berstein LM. Cancer and heterogeneity of obesity: a potential contribution of brown fat. Future Oncol 2012;8:1537–48.10.2217/fon.12.150Suche in Google Scholar
35. Johrer K, Ploner C, Thangavadivel S, Wuggenig P, Greil R. Adipocyte-derived players in hematologic tumors: useful novel targets? Exp Opin Biol Ther 2014;11:1–17.10.1517/14712598.2015.970632Suche in Google Scholar
36. Maeda K, Okubo K, Shimomura I, Mizuno K, Matsuzawa Y, Matsubara K. Analysis of an expression profile of genes in the human adipose tissue. Gene 1997;190:227–35.10.1016/S0378-1119(96)00730-5Suche in Google Scholar
37. Celis JE, Moreira JM, Cabezon T, Gromov P, Friis E, Rank F, Gromova I. Identification of extracellular and intracellular signaling components of the mammary adipose tissue and its interstitial fluid in high risk breast cancer patients: toward dissecting the molecular circuitry of epithelial-adipocyte stromal cell interactions. Mol Cell Proteomics 2005;4:492–522.10.1074/mcp.M500030-MCP200Suche in Google Scholar PubMed
38. Finley DS, Calvert VS, Inokuchi J, Lau A, Narula N, Petricoin EF, Zaldivar F, Santos R, Tyson DR, Ornstein DK. Periprostatic adipose tissue as a modulator of prostate cancer aggressiveness. J Urol 2009;182:1621–7.10.1016/j.juro.2009.06.015Suche in Google Scholar PubMed
39. Hursting SD, Hursting MJ. Growth signals, inflammation, and vascular perturbations: mechanistic links between obesity, metabolic syndrome, and cancer. Arterioscler Thromb Vasc Biol 2012;32:1766–70.10.1161/ATVBAHA.111.241927Suche in Google Scholar PubMed
40. Rose DP, Komninou D, Stephenson GD. Obesity, adipocytokines, and insulin resistance in breast cancer. Obes Rev 2004;5:153–65.10.1111/j.1467-789X.2004.00142.xSuche in Google Scholar PubMed
41. Miyoshi Y, Funahashi T, Tanaka S, Taguchi T, Tamaki Y, Shimomura I, Noguchi S. High expression of leptin receptor mRNA in breast cancer tissue predicts poor prognosis for patients with high, but not low, serum leptin levels. Int J Cancer 2006;118:1414–9.10.1002/ijc.21543Suche in Google Scholar PubMed
42. Ishikawa M, Kitayama J, Yamauchi T, Kadowaki T, Maki T, Miyato H, Yamashita H, Nagawa H. Adiponectin inhibits the growth and peritoneal metastasis of gastric cancer through its specific membrane receptors AdipoR1 and AdipoR2. Cancer Sci 2007;98:1120–7.10.1111/j.1349-7006.2007.00486.xSuche in Google Scholar PubMed
43. Schaffler A, Scholmerich J, Buechler C. Mechanisms of disease: adipokines and breast cancer – endocrine and paracrine mechanisms that connect adiposity and breast cancer. Nat Clin Pract Endocrinol Metab 2007;3:345–54.10.1038/ncpendmet0456Suche in Google Scholar PubMed
44. Kim JH, Kim KY, Jeon JH, Lee SH, Hwang JE, Lee JH, Kim KK, Lim JS, Kim KI, Moon EY, Lee HG, Ryu JH, Yang Y. Adipocyte culture medium stimulates production of macrophage inhibitory cytokine 1 in MDA-MB-231 cells. Cancer Lett 2008;261:253–62.10.1016/j.canlet.2007.11.020Suche in Google Scholar PubMed
45. Mueller MM, Fusenig NE. Friends or foes – bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 2004;4:839–49.10.1038/nrc1477Suche in Google Scholar PubMed
46. Tan J, Buache E, Alpy F, Daguenet E, Tomasetto CL, Ren GS, Rio MC. Stromal matrix metalloproteinase-11 is involved in the mammary gland postnatal development. Oncogene 2014;33:4050–9.10.1038/onc.2013.434Suche in Google Scholar PubMed
47. Basset P, Bellocq JP, Wolf C, Stoll I, Hutin P, Limacher JM, Podhajcer OL, Chenard MP, Rio MC, Chambon P. A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinomas. Nature 1990;348:699–704.10.1038/348699a0Suche in Google Scholar PubMed
48. Jodele S, Blavier L, Yoon JM, DeClerck YA. Modifying the soil to affect the seed: role of stromal-derived matrix metalloproteinases in cancer progression. Cancer Metastasis Rev 2006;25: 35–43.10.1007/s10555-006-7887-8Suche in Google Scholar PubMed
49. VanSaun MN, Matrisian LM. Matrix metalloproteinases and cellular motility in development and disease. Birth Defects Res C Embryo Today 2006;78:69–79.10.1002/bdrc.20061Suche in Google Scholar PubMed
50. Overall CM, Kleifeld O. Tumour microenvironment – opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat Rev Cancer 2006;6:227–39.10.1038/nrc1821Suche in Google Scholar PubMed
51. Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 2010;141:52–67.10.1016/j.cell.2010.03.015Suche in Google Scholar PubMed PubMed Central
52. Lijnen HR, Van HB, Frederix L, Rio MC, Collen D. Adipocyte hypertrophy in stromelysin-3 deficient mice with nutritionally induced obesity. Thromb Haemost 2002;87:530–5.10.1055/s-0037-1613035Suche in Google Scholar
53. Wang CS, Tetu B. Stromelysin-3 expression by mammary tumor-associated fibroblasts under in vitro breast cancer cell induction. Int J Cancer 2002;99:792–9.10.1002/ijc.10430Suche in Google Scholar PubMed
54. Andarawewa KL, Rio MC. New insights into MMP function in adipogenesis. In: Edwards DR, editor. The cancer degradome. Springer New York Science + Business Media, LLC 2008; Chapter 19:353–64.Suche in Google Scholar
55. Buache E, Thai R, Wendling C, Alpy F, Page A, Chenard MP, Dive V, Ruff M, Dejaegere A, Tomasetto C, Rio MC. Functional relationship between matrix metalloproteinase-11 and matrix metalloproteinase-14. Cancer Med 2014;3:1197–210.10.1002/cam4.290Suche in Google Scholar
56. Gregoire FM. Adipocyte differentiation: from fibroblast to endocrine cell. Exp Biol Med (Maywood) 2001;226:997–1002.10.1177/153537020122601106Suche in Google Scholar
57. Selvarajan S, Lund LR, Takeuchi T, Craik CS, Werb Z. A plasma kallikrein-dependent plasminogen cascade required for adipocyte differentiation. Nat Cell Biol 2001;3:267–75.10.1038/35060059Suche in Google Scholar
58. Lilla J, Stickens D, Werb Z. Metalloproteases and adipogenesis: a weighty subject. Am J Pathol 2002;160:1551–4.10.1016/S0002-9440(10)61100-5Suche in Google Scholar
59. Iyengar P, Espina V, Williams TW, Lin Y, Berry D, Jelicks LA, Lee H, Temple K, Graves R, Pollard J, Chopra N, Russell RG, Sasisekharan R, Trock BJ, Lippman M, Calvert VS, Petricoin EF, 3rd, Liotta L, Dadachova E, Pestell RG, Lisanti MP, Bonaldo P, Scherer PE. Adipocyte-derived collagen VI affects early mammary tumor progression in vivo, demonstrating a critical interaction in the tumor/stroma microenvironment. J Clin Invest 2005;115:1163–76.10.1172/JCI23424Suche in Google Scholar PubMed PubMed Central
60. Motrescu ER, Blaise S, Etique N, Messaddeq N, Chenard MP, Stoll I, Tomasetto C, Rio MC. Matrix metalloproteinase-11/stromelysin-3 exhibits collagenolytic function against collagen VI under normal and malignant conditions. Oncogene 2008;27:6347–55.10.1038/onc.2008.218Suche in Google Scholar PubMed
61. Menendez JA, Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 2007;7:763–77.10.1038/nrc2222Suche in Google Scholar PubMed
62. Hovey RC, Aimo L. Diverse and active roles for adipocytes during mammary gland growth and function. J Mammary Gland Biol Neoplasia 2010;15:279–90.10.1007/s10911-010-9187-8Suche in Google Scholar PubMed PubMed Central
63. Nomura DK, Long JZ, Niessen S, Hoover HS, Ng SW, Cravatt BF. Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell 2010;140:49–61.10.1016/j.cell.2009.11.027Suche in Google Scholar PubMed PubMed Central
64. Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK, Frank PG, Casimiro MC, Wang C, Fortina P, Addya S, Pestell RG, Martinez-Outschoorn UE, Sotgia F, Lisanti MP. The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 2009;8:3984–4001.10.4161/cc.8.23.10238Suche in Google Scholar PubMed
65. Gazi E, Gardner P, Lockyer NP, Hart CA, Brown MD, Clarke NW. Direct evidence of lipid translocation between adipocytes and prostate cancer cells with imaging FTIR microspectroscopy. J Lipid Res 2007;48:1846–56.10.1194/jlr.M700131-JLR200Suche in Google Scholar PubMed
66. Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR, Romero IL, Carey MS, Mills GB, Hotamisligil GS, Yamada SD, Peter ME, Gwin K, Lengyel E. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med 2011;17:1498–503.10.1038/nm.2492Suche in Google Scholar PubMed PubMed Central
67. Herroon MK, Rajagurubandara E, Hardaway AL, Powell K, Turchick A, Feldmann D, Podgorski I. Bone marrow adipocytes promote tumor growth in bone via FABP4-dependent mechanisms. Oncotarget 2013;4:2108–23.10.18632/oncotarget.1482Suche in Google Scholar PubMed PubMed Central
68. Le TT, Huff TB, Cheng JX. Coherent anti-Stokes Raman scattering imaging of lipids in cancer metastasis. BMC Cancer 2009;9:42.10.1186/1471-2407-9-42Suche in Google Scholar PubMed PubMed Central
69. Kwan HY, Fu X, Liu B, Chao X, Chan CL, Cao H, Su T, Tse AK, Fong WF, Yu ZL. Subcutaneous adipocytes promote melanoma cell growth by activating the akt signaling pathway: role of palmitic acid. J Biol Chem 2014;289:30525–37.10.1074/jbc.M114.593210Suche in Google Scholar PubMed PubMed Central
70. Roberts DL, Dive C, Renehan AG. Biological mechanisms linking obesity and cancer risk: new perspectives. Annu Rev Med 2010;61:301–16.10.1146/annurev.med.080708.082713Suche in Google Scholar PubMed
71. De Pergola G, Silvestris F. Obesity as a major risk factor for cancer. J Obes 2013;2013:291546.10.1155/2013/291546Suche in Google Scholar PubMed PubMed Central
72. Macedo LF, Sabnis G, Brodie A. Aromatase inhibitors and breast cancer. Ann NY Acad Sci 2009;1155:162–73.10.1111/j.1749-6632.2008.03689.xSuche in Google Scholar PubMed
73. Majed B, Moreau T, Senouci K, Salmon RJ, Fourquet A, Asselain B. Is obesity an independent prognosis factor in woman breast cancer? Breast Cancer Res Treat 2008;111:329–42.10.1007/s10549-007-9785-3Suche in Google Scholar PubMed
74. Rose DP, Vona-Davis L. Influence of obesity on breast cancer receptor status and prognosis. Exp Rev Anticancer Ther 2009;9:1091–101.10.1586/era.09.71Suche in Google Scholar PubMed
75. Duggan C, Irwin ML, Xiao L, Henderson KD, Smith AW, Baumgartner RN, Bernstein L, Ballard-Barbash R, McTiernan A. Associations of insulin resistance and adiponectin with mortality in women with breast cancer. J Clin Oncol 2010;29:32–9.10.1200/JCO.2009.26.4473Suche in Google Scholar
76. Gouveri E, Papanas N, Maltezos E. The female breast and diabetes. Breast 2011;20:205–11.10.1016/j.breast.2011.02.019Suche in Google Scholar
77. Daling JR, Malone KE, Doody DR, Johnson LG, Gralow JR, Porter PL. Relation of body mass index to tumor markers and survival among young women with invasive ductal breast carcinoma. Cancer 2001;92:720–9.10.1002/1097-0142(20010815)92:4<720::AID-CNCR1375>3.0.CO;2-TSuche in Google Scholar
78. Abu-Abid S, Szold A, Klausner J. Obesity and cancer. J Med 2002;33:73–86.Suche in Google Scholar
79. Fair AM, Montgomery K. Energy balance, physical activity, and cancer risk. Methods Mol Biol 2009;472:57–88.10.1007/978-1-60327-492-0_3Suche in Google Scholar
80. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med 2003;348:1625–38.10.1056/NEJMoa021423Suche in Google Scholar
81. Vainio H, Kaaks R, Bianchini F. Weight control and physical activity in cancer prevention: international evaluation of the evidence. Eur J Cancer Prev 2002;11:S94–100.Suche in Google Scholar
82. Malin A, Matthews CE, Shu XO, Cai H, Dai Q, Jin F, Gao YT, Zheng W. Energy balance and breast cancer risk. Cancer Epidemiol Biomarkers Prev 2005;14:1496–501.10.1158/1055-9965.EPI-04-0880Suche in Google Scholar
83. Sjostrom L, Narbro K, Sjostrom CD, Karason K, Larsson B, Wedel H, Lystig T, Sullivan M, Bouchard C, Carlsson B, Bengtsson C, Dahlgren S, Gummesson A, Jacobson P, Karlsson J, Lindroos AK, Lonroth H, Naslund I, Olbers T, Stenlof K, Torgerson J, Agren G, Carlsson LM. Effects of bariatric surgery on mortality in Swedish obese subjects. N Engl J Med 2007;357:741–52.10.1056/NEJMoa066254Suche in Google Scholar
84. Kannen V, Moreira MC, Waaga-Gasser AM, Modiano P, Elias Junior J, Fernandes CR, Garcia SB. Partial lipectomy reduces dimethylhydrazine-induced carcinogenic initiation in the colon of rats. Toxicology 2014;316:9–13.10.1016/j.tox.2013.11.010Suche in Google Scholar
85. Fain JN, Madan AK, Hiler ML, Cheema P, Bahouth SW. Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans. Endocrinology 2004;145:2273–82.10.1210/en.2003-1336Suche in Google Scholar
86. Rabe K, Lehrke M, Parhofer KG, Broedl UC. Adipokines and insulin resistance. Mol Med 2008;14:741–51.10.2119/2008-00058.RabeSuche in Google Scholar
87. Bluher M, Michael MD, Peroni OD, Ueki K, Carter N, Kahn BB, Kahn CR. Adipose tissue selective insulin receptor knockout protects against obesity and obesity-related glucose intolerance. Dev Cell 2002;3:25–38.10.1016/S1534-5807(02)00199-5Suche in Google Scholar
88. Guilherme A, Virbasius JV, Puri V, Czech MP. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol 2008;9:367–77.10.1038/nrm2391Suche in Google Scholar PubMed PubMed Central
89. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW, Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003;112:1796–808.10.1172/JCI200319246Suche in Google Scholar
90. Hoene M, Weigert C. The role of interleukin-6 in insulin resistance, body fat distribution and energy balance. Obes Rev 2008;9:20–9.Suche in Google Scholar
91. Lashinger LM, Ford NA, Hursting SD. Interacting inflammatory and growth factor signals underlie the obesity-cancer link. J Nutr 2014;144:109–13.10.3945/jn.113.178533Suche in Google Scholar PubMed PubMed Central
92. Riondino S, Roselli M, Palmirotta R, Della-Morte D, Ferroni P, Guadagni F. Obesity and colorectal cancer: role of adipokines in tumor initiation and progression. World J Gastroenterol 2014;20:5177–90.10.3748/wjg.v20.i18.5177Suche in Google Scholar PubMed PubMed Central
93. Tanko LB, Bruun JM, Alexandersen P, Bagger YZ, Richelsen B, Christiansen C, Larsen PJ. Novel associations between bioavailable estradiol and adipokines in elderly women with different phenotypes of obesity: implications for atherogenesis. Circulation 2004;110:2246–52.10.1161/01.CIR.0000144470.55149.E5Suche in Google Scholar PubMed
94. Calle EE, Thun MJ. Obesity and cancer. Oncogene 2004;23:6365–78.10.1038/sj.onc.1207751Suche in Google Scholar PubMed
95. Kaur T, Zhang ZF. Obesity, breast cancer and the role of adipocytokines. Asian Pac J Cancer Prev 2005;6:547–52.Suche in Google Scholar
96. Ezzat VA, Duncan ER, Wheatcroft SB, Kearney MT. The role of IGF-I and its binding proteins in the development of type 2 diabetes and cardiovascular disease. Diabetes Obes Metab 2008;10:198–211.10.1111/j.1463-1326.2007.00709.xSuche in Google Scholar PubMed
97. Pollak M. Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer 2008;8:915–28.10.1038/nrc2536Suche in Google Scholar PubMed
98. Carter JC, Church FC. Obesity and breast cancer: the roles of peroxisome proliferator-activated receptor-gamma and plasminogen activator inhibitor-1. PPAR Res 2009;2009:345320.Suche in Google Scholar
99. Sun K, Kusminski CM, Scherer PE. Adipose tissue remodeling and obesity. J Clin Invest 2011;121:2094–101.10.1172/JCI45887Suche in Google Scholar PubMed PubMed Central
100. Hausman GJ, Richardson RL. Adipose tissue angiogenesis. J Anim Sci 2004;82:925–34.10.2527/2004.823925xSuche in Google Scholar PubMed
101. Guzik TJ, Mangalat D, Korbut R. Adipocytokines – novel link between inflammation and vascular function? J Physiol Pharmacol 2006;57:505–28.Suche in Google Scholar
102. Fuentes-Mattei E, Velazquez-Torres G, Phan L, Zhang F, Chou PC, Shin JH, Choi HH, Chen JS, Zhao R, Chen J, Gully C, Carlock C, Qi Y, Zhang Y, Wu Y, Esteva FJ, Luo Y, McKeehan WL, Ensor J, Hortobagyi GN, Pusztai L, Fraser Symmans W, Lee MH, Yeung SC. Effects of obesity on transcriptomic changes and cancer hallmarks in estrogen receptor-positive breast cancer. J Natl Cancer Inst 2014;106.10.1093/jnci/dju158Suche in Google Scholar PubMed PubMed Central
103. Gritsenko PG, Ilina O, Friedl P. Interstitial guidance of cancer invasion. J Pathol 2012;226:185–99.10.1002/path.3031Suche in Google Scholar PubMed
104. Vaid M, Singh T, Prasad R, Katiyar SK. Intake of high-fat diet stimulates the risk of ultraviolet radiation-induced skin tumors and malignant progression of papillomas to carcinoma in SKH-1 hairless mice. Toxicol Appl Pharmacol 2014;274:147–55.10.1016/j.taap.2013.10.030Suche in Google Scholar PubMed
105. Chung H, Lee YS, Mayoral R, Oh DY, Siu JT, Webster NJ, Sears DD, Olefsky JM, Ellies LG. Omega-3 fatty acids reduce obesity-induced tumor progression independent of GPR120 in a mouse model of postmenopausal breast cancer. Oncogene 2014. doi: 10.1038/onc.2014.283. [Epub ahead of print].10.1038/onc.2014.283Suche in Google Scholar PubMed PubMed Central
106. Chen CT, Du Y, Yamaguchi H, Hsu JM, Kuo HP, Hortobagyi GN, Hung MC. Targeting the IKKbeta/mTOR/VEGF signaling pathway as a potential therapeutic strategy for obesity-related breast cancer. Mol Cancer Ther 2012;11:2212–21.10.1158/1535-7163.MCT-12-0180Suche in Google Scholar PubMed PubMed Central
107. Stemmer K, Perez-Tilve D, Ananthakrishnan G, Bort A, Seeley RJ, Tschop MH, Dietrich DR, Pfluger PT. High-fat-diet-induced obesity causes an inflammatory and tumor-promoting microenvironment in the rat kidney. Dis Model Mech 2012;5:627–35.10.1242/dmm.009407Suche in Google Scholar PubMed PubMed Central
108. Tang FY, Pai MH, Chiang EP. Consumption of high-fat diet induces tumor progression and epithelial-mesenchymal transition of colorectal cancer in a mouse xenograft model. J Nutr Biochem 2012;23:1302–13.10.1016/j.jnutbio.2011.07.011Suche in Google Scholar PubMed
109. Willette AA, Bendlin BB, Colman RJ, Kastman EK, Field AS, Alexander AL, Sridharan A, Allison DB, Anderson R, Voytko ML, Kemnitz JW, Weindruch RH, Johnson SC. Calorie restriction reduces the influence of glucoregulatory dysfunction on regional brain volume in aged rhesus monkeys. Diabetes 2012;61:1036–42.10.2337/db11-1187Suche in Google Scholar PubMed PubMed Central
110. Kim YJ, Kim JS, Seo YR, Park JH, Choi MS, Sung MK. Carnosic acid suppresses colon tumor formation in association with antiadipogenic activity. Mol Nutr Food Res 2014;58:2274–85.10.1002/mnfr.201400293Suche in Google Scholar PubMed
111. Bost F, Sahra IB, Le Marchand-Brustel Y, Tanti JF. Metformin and cancer therapy. Curr Opin Oncol 2012;24:103–8.10.1097/CCO.0b013e32834d8155Suche in Google Scholar PubMed
112. Tajima K, Nakamura A, Shirakawa J, Togashi Y, Orime K, Sato K, Inoue H, Kaji M, Sakamoto E, Ito Y, Aoki K, Nagashima Y, Atsumi T, Terauchi Y. Metformin prevents liver tumorigenesis induced by high-fat diet in C57Bl/6 mice. Am J Physiol Endocrinol Metab 2013;305:E987–98.10.1152/ajpendo.00133.2013Suche in Google Scholar PubMed
113. Tebbe C, Chhina J, Dar SA, Sarigiannis K, Giri S, Munkarah AR, Rattan R. Metformin limits the adipocyte tumor-promoting effect on ovarian cancer. Oncotarget 2014;5:4746–64.10.18632/oncotarget.2012Suche in Google Scholar PubMed PubMed Central
114. Ben Sahra I, Le Marchand-Brustel Y, Tanti JF, Bost F. Metformin in cancer therapy: a new perspective for an old antidiabetic drug? Mol Cancer Ther 2010;9:1092–9.10.1158/1535-7163.MCT-09-1186Suche in Google Scholar PubMed
115. Takahashi H, Hosono K, Endo H, Nakajima A. Colon epithelial proliferation and carcinogenesis in diet-induced obesity. J Gastroenterol Hepatol 2013;28:41–7.10.1111/jgh.12240Suche in Google Scholar PubMed
116. Gong J, Robbins LA, Lugea A, Waldron RT, Jeon CY, Pandol SJ. Diabetes, pancreatic cancer, and metformin therapy. Front Physiol 2014;5:426.10.3389/fphys.2014.00426Suche in Google Scholar PubMed PubMed Central
117. Hursting SD, Dunlap SM, Ford NA, Hursting MJ, Lashinger LM. Calorie restriction and cancer prevention: a mechanistic perspective. Cancer Metab 2013;1:10.10.1186/2049-3002-1-10Suche in Google Scholar PubMed PubMed Central
118. Martin-Padura I, Gregato G, Marighetti P, Mancuso P, Calleri A, Corsini C, Pruneri G, Manzotti M, Lohsiriwat V, Rietjens M, Petit JY, Bertolini F. The white adipose tissue used in lipotransfer procedures is a rich reservoir of CD34+ progenitors able to promote cancer progression. Cancer Res 2012;72:325–34.10.1158/0008-5472.CAN-11-1739Suche in Google Scholar PubMed
119. Petit JY, Rietjens M, Botteri E, Rotmensz N, Bertolini F, Curigliano G, Rey P, Garusi C, De Lorenzi F, Martella S, Manconi A, Barbieri B, Veronesi P, Intra M, Brambullo T, Gottardi A, Sommario M, Lomeo G, Iera M, Giovinazzo V, Lohsiriwat V. Evaluation of fat grafting safety in patients with intraepithelial neoplasia: a matched-cohort study. Ann Oncol 2013;24:1479–84.10.1093/annonc/mds660Suche in Google Scholar PubMed
120. Sheng X, Mittelman SD. The role of adipose tissue and obesity in causing treatment resistance of acute lymphoblastic leukemia. Front Pediatr 2014;2:53.10.3389/fped.2014.00053Suche in Google Scholar PubMed PubMed Central
121. Townsend K, Tseng YH. Brown adipose tissue: recent insights into development, metabolic function and therapeutic potential. Adipocyte 2012;1:13–24.10.4161/adip.18951Suche in Google Scholar PubMed PubMed Central
122. Cypess AM, Zhang H, Schulz TJ, Huang TL, Espinoza DO, Kristiansen K, Unterman TG, Tseng YH. Insulin/IGF-I regulation of necdin and brown adipocyte differentiation via CREB- and FoxO1-associated pathways. Endocrinology 2011;152:3680–9.10.1210/en.2011-1229Suche in Google Scholar PubMed PubMed Central
123. Frontini A, Vitali A, Perugini J, Murano I, Romiti C, Ricquier D, Guerrieri M, Cinti S. White-to-brown transdifferentiation of omental adipocytes in patients affected by pheochromocytoma. Biochim Biophys Acta 2013;1831:950–9.10.1016/j.bbalip.2013.02.005Suche in Google Scholar PubMed
124. Cao Q, Hersl J, La H, Smith M, Jenkins J, Goloubeva O, Dilsizian V, Tkaczuk K, Chen W, Jones L. A pilot study of FDG PET/CT detects a link between brown adipose tissue and breast cancer. BMC Cancer 2014;14:126.10.1186/1471-2407-14-126Suche in Google Scholar PubMed PubMed Central
125. Jones LP, Buelto D, Tago E, Owusu-Boaitey KE. Abnormal mammary adipose tissue environment of brca1 mutant mice show a persistent deposition of highly vascularized multilocular adipocytes. J Cancer Sci Ther 2011; (Suppl 2): 004.Suche in Google Scholar
126. Siclari VA, Guise TA, Chirgwin JM. Molecular interactions between breast cancer cells and the bone microenvironment drive skeletal metastases. Cancer Metastasis Rev 2006;25:621–33.10.1007/s10555-006-9023-1Suche in Google Scholar PubMed
127. Mitchell NS, Catenacci VA, Wyatt HR, Hill JO. Obesity: overview of an epidemic. Psychiatr Clin North Am 2011;34:717–32.10.1016/j.psc.2011.08.005Suche in Google Scholar PubMed PubMed Central
©2015 by De Gruyter
Artikel in diesem Heft
- Frontmatter
- Editorial Preface
- Adiposopathy in cancer and (cardio)metabolic diseases: an endocrine approach – Part 2
- Topic 1: Impact of Adiposopathy in Tumoral Disease: Endocrine and Clinical Aspects
- Review Articles
- Obesity and cancer
- Adipose tissue dysfunction and its effects on tumor metabolism
- Local adipocyte cancer cell paracrine loop: can “sick fat” be more detrimental?
- Adipose tissue, obesity and adipokines: role in cancer promotion
- Obesity-related proliferative diseases: the interaction between adipose tissue and estrogens in post-menopausal women
- Molecular cues on obesity signals, tumor markers and endometrial cancer
Artikel in diesem Heft
- Frontmatter
- Editorial Preface
- Adiposopathy in cancer and (cardio)metabolic diseases: an endocrine approach – Part 2
- Topic 1: Impact of Adiposopathy in Tumoral Disease: Endocrine and Clinical Aspects
- Review Articles
- Obesity and cancer
- Adipose tissue dysfunction and its effects on tumor metabolism
- Local adipocyte cancer cell paracrine loop: can “sick fat” be more detrimental?
- Adipose tissue, obesity and adipokines: role in cancer promotion
- Obesity-related proliferative diseases: the interaction between adipose tissue and estrogens in post-menopausal women
- Molecular cues on obesity signals, tumor markers and endometrial cancer