Startseite Dynamic mechanical analysis (DMA) of waterlogged archaeological wood at room temperature
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Dynamic mechanical analysis (DMA) of waterlogged archaeological wood at room temperature

  • Benedetto Pizzo EMAIL logo , Elisa Pecoraro und Simona Lazzeri
Veröffentlicht/Copyright: 19. Januar 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The viscoelastic properties of waterlogged wood (WLW) were investigated via dynamic mechanical analysis (DMA) at room temperature and under water saturated conditions, aiming at the investigation of the relationships between viscoelasticity and chemical composition. Different softwoods (SWs) and hardwoods (HWs) from several archaeological sites were sampled, which had different levels of decay (from highly-decayed to little changed). The analytical methods included lignin and holocellulose determination by Fourier transform infrared (FTIR) spectroscopy, moisture content (MC), basic density (BD), micromorphological observations, and the DMA was performed in three-point bending and submersion mode. Both HWs and SWs showed an exponential decrease of both storage modulus (E′) and loss modulus (E″), which are related to the amount of crystalline and paracrystalline cellulose left in the cell wall, respectively. The ratio E″/E′ (tanδ) varied with the frequency in different ways depending on the preservation state of the samples. Less decayed material had a higher tanδ than the fresh reference wood and lower (or similar) tanδ in the case of highly decayed samples. Accordingly, the long-term behaviour under a certain sustained load of WLW is decay dependent.

Acknowledgements

This work was started during the PhD Thesis of Dr. Elisa Pecoraro. The analysed wood samples have been taken from small portions of the material collected during several years of research on waterlogged archaeological wood carried out at CNR-IVALSA. All authors are very grateful to the various conservation authorities that provided the material during these years: Soprintendenza Archeologia della Toscana; Ufficio Beni Archeologici della Soprintendenza per i beni culturali della Provincia Autonoma di Trento; Parco Archeologico di Ercolano and Herculaneum Conservation Project; Soprintendenza Archeologia, Belle arti e Paesaggio per il Comune di Venezia e Laguna and CORILA (Consorzio Ricerche in Laguna); Soprintendenza Archeologia, Belle arti e Paesaggio dell’Abruzzo; Soprintendenza Archeologia dell’Emilia-Romagna. The authors want also to express special thanks to Dr. Nicola Macchioni for his suggestions and support.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Employment or leadership: None declared.

  4. Honorarium: None declared.

References

Almkvist, G., Persson, I. (2008) Degradation of polyethylene glycol and hemicellulose in the Vasa. Holzforschung 62:64–70.10.1515/HF.2008.009Suche in Google Scholar

Almkvist, G., Norbakhsh, S., Bjurhager, I., Varmuza, K. (2016) Prediction of tensile strength in iron-contaminated archaeological wood by FT-IR spectroscopy – a study of degradation in recent oak and Vasa oak. Holzforschung 70:855–865.10.1515/hf-2015-0223Suche in Google Scholar

Babiński, L., Izdebska-Mucha, D., Waliszewska, B. (2014) Evaluation of the state of preservation of waterlogged archaeological wood based on its physical properties: basic density vs. wood substance density. J. Archaeol. Sci. 46:372–383.10.1016/j.jas.2014.03.038Suche in Google Scholar

Bergander, A., Salmen, L. (2000) Transverse elastic modulus of the native wood fibre wall. J. Pulp Pap. Sci. 26:234–238.Suche in Google Scholar

Björdal, C.G., Nilsson, T., Daniel, G. (1999) Microbial decay of waterlogged archaeological wood found in Sweden applicable to archaeology and conservation. Int. Biodeterior. Biodegrad. 43:63–73.10.1016/S0964-8305(98)00070-5Suche in Google Scholar

Bjurhager, I., Gamstedt, E.K. Creep behaviour of wood from the Vasa ship. Mechanical Testing and Properties of Vasa Oak. A Review. Department of Fiber and Polymer Technology, Royal Institute of Technology (KTH), Stockholm, 2011.Suche in Google Scholar

Bjurhager, I., Nilsson, H., Iversen, T., Lindfors, E.L., Berglund, L.A. Mechanical properties of Vasa Oak in relation to cellulose degradation and chemical composition. Department of Fiber and Polymer Technology, Royal Institute of Technology (KTH), Stockholm, 2008.Suche in Google Scholar

Bjurhager, I., Halonen, H., Lindfors, E.-L., Iversen, T., Almkvist, G., Gamstedt, E.K., Berglund, L.A. (2012) State of degradation in archeological oak from the 17th century Vasa ship: Substantial strength loss correlates with reduction in (holo)cellulose molecular weight. Biomacromolecules 13:2521–2527.10.1021/bm3007456Suche in Google Scholar PubMed

Capano, M., Pignatelli, O., Capretti, C., Lazzeri, S., Pizzo, B., Marzaioli, F., Martinelli, N., Gennarelli, I., Gigli, S., Terrasi, F., Macchioni, N. (2015) Anatomical and chemical analyses on wooden artifacts from a Samnite sanctuary in Hirpinia (Southern Italy). J. Archaeol. Sci. 57:370–379.10.1016/j.jas.2015.03.002Suche in Google Scholar

Capretti, C., Macchioni, N., Pizzo, B., Galotta, G., Giachi, G., Giampaola, D. (2008) The characterization of waterlogged archaeological wood: the three Roman ships found in Naples (Italy). Archaeometry 50:855–876.10.1111/j.1475-4754.2007.00376.xSuche in Google Scholar

Cave, I.D. (1968) The anisotropic elasticity of the plant cell wall. Wood Sci. Technol. 2:268–278.10.1007/BF00350273Suche in Google Scholar

Colombini, M.P., Lucejko, J.J., Modugno, F., Orlandi, M., Tolppa, E.-L., Zoia, L. (2009) A multi-analytical study of degradation of lignin in archaeological waterlogged wood. Talanta 80:61–70.10.1016/j.talanta.2009.06.024Suche in Google Scholar PubMed

Donato, I.D., Lazzara, G. (2012) Porosity determination with helium pycnometry as a method to characterize waterlogged woods and the efficacy of the conservation treatments. Archaeometry 54:906–915.10.1111/j.1475-4754.2011.00657.xSuche in Google Scholar

Fengel, D., Wegener, G. Wood: Chemistry, Ultrastructure, Reactions. De Gruyter Publications, Berlin, 1989.Suche in Google Scholar

Ferry, J.D. Viscoelastic Properties of Polymers. 3d ed. Wiley, New York, 1980.Suche in Google Scholar

Giachi, G., Capretti, C., Macchioni, N., Pizzo, B., Donato, I.D. (2010) A methodological approach in the evaluation of the efficacy of treatments for the dimensional stabilisation of waterlogged archaeological wood. J. Cult. Herit. 11:91–101.10.1016/j.culher.2009.04.003Suche in Google Scholar

Giachi, G., Capretti, C., Donato, I.D., Macchioni, N., Pizzo, B. (2011) New trials in the consolidation of waterlogged archaeological wood with different acetone-carried products. J. Archaeol. Sci. 38:2957–2967.10.1016/j.jas.2011.06.012Suche in Google Scholar

Giordano, G. Tecnologia del legno. UTET, Torino, 1981.Suche in Google Scholar

Havimo, M. (2009) A literature-based study on the loss tangent of wood in connection with mechanical pulping. Wood Sci. Technol. 43:627–642.10.1007/s00226-009-0271-4Suche in Google Scholar

Hedges, J.I. (1990) The chemistry of archaeological wood. In: Archaeological Wood. Properties, Chemistry, and Preservation. Eds. Rowell, R.M., Barbour, R.J. American Chemical Society, Washington, DC. pp. 111–140.Suche in Google Scholar

Hoffmann, P. (2010) On the long-term visco-elastic behaviour of polyethylene glycol (PEG) impregnated archaeological oak wood. Holzforschung 64:725–728.10.1515/hf.2010.082Suche in Google Scholar

Jensen, P., Gregory, D.J. (2006) Selected physical parameters to characterize the state of preservation of waterlogged archaeological wood: a practical guide for their determination. J. Archaeol. Sci. 33:551–559.10.1016/j.jas.2005.09.007Suche in Google Scholar

Jiang, J., Lu, J., Zhao, Y., Wu, Y. (2010) Influence of frequency on wood viscoelasticity under two types of heating conditions. Dry. Technol. 28:823–829.10.1080/07373937.2010.485084Suche in Google Scholar

Kaboorani, A., Blanchet, P. (2014) Determining the linear viscoelastic region of sugar maple wood by dynamic mechanical analysis. BioResources 9:4392–4409.10.15376/biores.9.3.4392-4409Suche in Google Scholar

Kelley, S.S., Rials, T.G., Glasser, W.G. (1987) Relaxation behaviour of the amorphous components of wood. J. Mater. Sci. 22:617–624.10.1007/BF01160778Suche in Google Scholar

Klaassen, R.K.W.M. (2008) Bacterial decay in wooden foundation piles – patterns and causes: A study of historical pile foundations in the Netherlands. Int. Biodeterior. Biodegrad. 61:45–60.10.1016/j.ibiod.2007.07.006Suche in Google Scholar

Klaassen, R.K.W.M., Creemers, J.G.M. (2012) Wooden foundation piles and its underestimated relevance for cultural heritage. J. Cult. Herit. 13:S123–S128.10.1016/j.culher.2012.02.014Suche in Google Scholar

Kretschmann, D.E. (2010) Chapter 5. Mechanical Properties of wood. In: Wood Handbook. Wood as an Engineering Material. Centennial Edition. General Technical Report FPL-GTR-190. Ed. Forest Products Laboratory. U.S. Department of Agriculture, Forest Service, Madison, WI. pp. 5.1–5.46.Suche in Google Scholar

Laborie, M.-P.G., Salmén, L., Frazier, C.E. (2004) Cooperativity analysis of the in situ lignin glass transition. Holzforschung 58:129–133.10.1515/HF.2004.018Suche in Google Scholar

Lenth, C.A., Kamke, F.A. (2001) Moisture dependent softening behavior of wood. Wood Fiber Sci. 33:492–507.Suche in Google Scholar

Lin, Y.-H. Polymer Viscoelasticity: Basics, Molecular Theories, and Experiments. World Scientific, Singapore, 2003.10.1142/5294Suche in Google Scholar

Lucejko, J.J., Modugno, F., Ribechini, E., Tamburini, D., Colombini, M.P. (2015) Analytical instrumental techniques to study archaeological wood degradation. Appl. Spectrosc. Rev. 50:584–625.10.1080/05704928.2015.1046181Suche in Google Scholar

Macchioni, N., Pizzo, B., Capretti, C., Sozzi, L., Fiorentino, L., Lazzeri, S. Relazione sulle analisi condotte sui campioni di legno archeologico imbibito provenienti dallo scavo di Santa Maria in Padovetere. CNR-IVALSA, Sesto Fiorentino (FI), 2009.Suche in Google Scholar

Macchioni, N., Pizzo, B., Capretti, C., Giachi, G. (2012) How an integrated diagnostic approach can help in the correct evaluation of the state of preservation of waterlogged archaeological wooden artefacts. J. Archaeol. Sci. 39:3255–3263.10.1016/j.jas.2012.05.008Suche in Google Scholar

Macchioni, N., Capretti, C., Sozzi, L., Pizzo, B. (2013) Grading the decay of waterlogged archaeological wood according to anatomical characterisation. The case of the Fiavé site (N-E Italy). Int. Biodeterior. Biodegrad. 84:54–64.10.1016/j.ibiod.2013.05.028Suche in Google Scholar

Macchioni, N., Pizzo, B., Capretti, C. (2016a) An investigation into preservation of wood from Venice foundations. Constr. Build. Mater. 111:652–661.10.1016/j.conbuildmat.2016.02.144Suche in Google Scholar

Macchioni, N., Pizzo, B., Capretti, C., Pecoraro, E., Sozzi, L., Lazzeri, S. (2016b) New wooden archaeological finds from Herculaneum: the state of preservation and hypothesis of consolidation of the material from the house of the relief of Telephus. Archaeometry 58:1024–1037.10.1111/arcm.12213Suche in Google Scholar

Macchioni, N., Pizzo, B., Capretti, C., Pecoraro, E., Szitar, A., Bucsa, L. (2016c) Assessment of the state of preservation of the wooden foundation system on the old fortress of Timisoara and in situ preservation In: 13th ICOM-CC Wet Organic Archaeological Materials Conference (WOAM), Florence, Italy. p. 13.Suche in Google Scholar

Macchioni, N., Pecoraro, E., Pizzo, B. (2017) The measurement of maximum water content (MWC) on waterlogged archaeological wood: A comparison between three different methodologies. J. Cult. Herit. https://doi.org/10.1016/j.culher.2017.10.005.10.1016/j.culher.2017.10.005Suche in Google Scholar

Macosko, C.W. (ed) Rheology: Principles, Measurements, and Applications. Wiley-VCH, New York, 1994.Suche in Google Scholar

Malkin, A.Y. Rheology. Fundamentals. ChemTec Publishing, Toronto, 1994.Suche in Google Scholar

Mansfield, S.D., Parish, R., Ott, P.K., Hart, J.F., Goudie, J.W. (2016) Assessing the wood quality of interior spruce (Picea glauca× P. engelmannii): variation in strength, relative density, microfibril angle, and fiber length. Holzforschung 70:223–234.10.1515/hf-2015-0008Suche in Google Scholar

Menard, K.P. Dynamic Mechanical Analysis: A Practical Introduction. CRC Press, Boca Raton, FL, 2008.10.1201/9781420053135Suche in Google Scholar

Montero, C., Clair, B., Alméras, T., Lee, A. van der, Gril, J. (2012) Relationship between wood elastic strain under bending and cellulose crystal strain. Compos. Sci. Technol. 72:175–181.10.1016/j.compscitech.2011.10.014Suche in Google Scholar

Navi, P., Stanzl-Tschegg, S. (2009) Micromechanics of creep and relaxation of wood. A review COST Action E35 2004–2008: wood machining – micromechanics and fracture. Holzforschung 63:186–195.10.1515/HF.2009.013Suche in Google Scholar

Olsson, A.-M., Salmén, L. (1992) Viscoelasticity of in situ lignin as affected by structure: softwood vs. hardwood. In: Viscoelasticity of Biomaterials. Eds. Glasser, W.G., Hatakeyama, H. American Chemical Society, Washington, DC. pp. 133–143.10.1021/bk-1992-0489.ch009Suche in Google Scholar

Olsson, A.-M., Salmén, L. (1997) The effect of lignin composition on the viscoelastic properties of wood. Nord. Pulp Pap. Res. J. 12:140–144.10.3183/npprj-1997-12-03-p140-144Suche in Google Scholar

Pizzo, B., Giachi, G., Fiorentino, L. (2010) Evaluation of the applicability of conventional methods for the chemical characterisation of waterlogged archaeological wood. Archaeometry 52:656–667.Suche in Google Scholar

Pizzo, B., Giachi, G., Fiorentino, L. (2013a) Reasoned use of chemical parameters for the diagnostic evaluation of the state of preservation of waterlogged archaeological wood. J. Archaeol. Sci. 40:1673–1680.10.1016/j.jas.2012.12.003Suche in Google Scholar

Pizzo, B., Pecoraro, E., Macchioni, N. (2013b) A new method to quantitatively evaluate the chemical composition of waterlogged wood by means of attenuated total reflectance fourier transform infrared (ATR FT-IR) measurements carried out on wet material. Appl. Spectrosc. 67:553–562.10.1366/12-06819Suche in Google Scholar PubMed

Pizzo, B., Macchioni, N., Capretti, C., Sozzi, L., Lazzeri, S., Pecoraro, E., Fiorentino, L. Final Report. Indagini effettuate su 40 campioni prelevati da altrettanti oggetti in legno provenienti dal sito di Alba Fucens (AQ) e conservati presso i laboratori del Museo delle Paludi di Celano. CNR-IVALSA, Sesto Fiorentino (FI), 2014.Suche in Google Scholar

Pizzo, B., Pecoraro, E., Alves, A., Macchioni, N., Rodrigues, J.C. (2015) Quantitative evaluation by attenuated total reflectance infrared (ATR-FTIR) spectroscopy of the chemical composition of decayed wood preserved in waterlogged conditions. Talanta 131:14–20.10.1016/j.talanta.2014.07.062Suche in Google Scholar PubMed

Pizzo, B., Macchioni, N., Capretti, C., Pecoraro, E., Sozzi, L., Fiorentino, L. (2016) Assessing the wood compressive strength in pile foundations in relation to diagnostic analysis: the example of the Church of Santa Maria Maggiore, Venice. Constr. Build. Mater. 114:470–480.10.1016/j.conbuildmat.2016.03.173Suche in Google Scholar

Placet, V., Passard, J., Perré, P. (2008) Viscoelastic properties of wood across the grain measured under water-saturated conditions up to 135°C: evidence of thermal degradation. J. Mater. Sci. 43:3210–3217.10.1007/s10853-008-2546-9Suche in Google Scholar

Pournou, A. (2008) Deterioration assessment of waterlogged archaeological lignocellulosic material via 13C CP/MAS NMR. Archaeometry 50:129–141.Suche in Google Scholar

Reiniati, I., Osman, N.B., Mc Donald, A.G., Laborie, M.-P. (2015) Linear viscoelasticity of hot-pressed hybrid poplar relates to densification and to the in situ molecular parameters of cellulose. Ann. For. Sci. 72:693–703.10.1007/s13595-014-0421-1Suche in Google Scholar

Salmén, L. (1984) Viscoelastic properties of in-situ lignin under water-saturated conditions. J. Mater. Sci. 19:3090–3096.10.1007/BF01026988Suche in Google Scholar

Salmén, L. (2004) Micromechanical understanding of the cell-wall structure. C. R. Biol. 327:873–880.10.1016/j.crvi.2004.03.010Suche in Google Scholar PubMed

Salmén, L., Burgert, I. (2009) Cell wall features with regard to mechanical performance. A review. COST Action E35 2004–2008: wood machining – Micromechanics and fracture. Holzforschung 63:121–129.10.1515/HF.2009.011Suche in Google Scholar

Shaw, M.T., MacKnight, W.J. Introduction to Polymer Viscoelasticity. 3rd ed. Wiley-Interscience, Hoboken, NJ, 2005.10.1002/0471741833Suche in Google Scholar

Staccioli, G., Santoni, I., Pizzo, B. (2014) Decay of fossil wood from kimberlite pipes of Lac de Gras in the Canadian sub-Arctic area. Ann. Paléontol. 100:87–94.10.1016/j.annpal.2013.11.004Suche in Google Scholar

Stevanic, J.S., Salmén, L. (2009) Orientation of the wood polymers in the cell wall of spruce wood fibres. Holzforschung 63:497–503.10.1515/HF.2009.094Suche in Google Scholar

Tamburini, D., Lucejko, J.J., Modugno, F., Colombini, M.P. (2014) Characterisation of archaeological waterlogged wood from Herculaneum by pyrolysis and mass spectrometry. Int. Biodeterior. Biodegrad. 86:142–149.10.1016/j.ibiod.2013.06.024Suche in Google Scholar

Tamburini, D., Lucejko, J.J., Ribechini, E., Colombini, M.P. (2015) Snapshots of lignin oxidation and depolymerization in archaeological wood: An EGA-MS study. J. Mass Spectrom. 50:1103–1113.10.1002/jms.3631Suche in Google Scholar PubMed

UNI 11205 Cultural Heritage. Archaeological and Archaeo-Botanic Wood. Guidelines to the Characterization. Ente Nazionale Italiano di Unificazione, Milano, 2007.Suche in Google Scholar

Vorobyev, A., Arnould, O., Laux, D., Longo, R., van Dijk, N.P., Gamstedt, E.K. (2016) Characterisation of cubic oak specimens from the Vasa ship and recent wood by means of quasi-static loading and resonance ultrasound spectroscopy (RUS). Holzforschung 70:457–465.10.1515/hf-2015-0073Suche in Google Scholar

Vorobyev, A., Almkvist, G., van Dijk, N.P., Gamstedt, E.K. (2017) Relations of density, polyethylene glycol treatment and moisture content with stiffness properties of Vasa oak samples. Holzforschung 71:327–335.10.1515/hf-2016-0202Suche in Google Scholar

Wagner, L., Almkvist, G., Bader, T.K., Bjurhager, I., Rautkari, L., Gamstedt, E.K. (2016) The influence of chemical degradation and polyethylene glycol on moisture-dependent cell wall properties of archeological wooden objects: a case study of the Vasa shipwreck. Wood Sci. Technol. 50:1103–1123.10.1007/s00226-016-0861-xSuche in Google Scholar

Received: 2017-7-17
Accepted: 2017-11-15
Published Online: 2018-1-19
Published in Print: 2018-4-25

©2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hf-2017-0114/html
Button zum nach oben scrollen