Startseite Comparison of physical and thermal properties of various wood-inorganic composites (WICs) derived by the sol-gel process
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Comparison of physical and thermal properties of various wood-inorganic composites (WICs) derived by the sol-gel process

  • Ke-Chang Hung und Jyh-Horng Wu EMAIL logo
Veröffentlicht/Copyright: 17. Januar 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The physical properties and thermal decomposition kinetics of wood-inorganic composites (WICs) were in focus, which were prepared from methyltriethoxysilane (MTEOS), tetraethoxysilane (TEOS) and titanium (IV) isopropoxide (TTIP) by the sol-gel process. The hydrophobicity and dimensional stability of the composites were better than those of unmodified wood (Wcontr), but the performance of SiO2-based WICs (WICSiO2) was the best. The SEM-EDX micrographs show that silica is only distributed within the cell wall of the WICSiO2. By contrast, titania was deposited principally in the cell lumens of the WICTiO2. The thermal decomposition kinetic experiments show that the average apparent activation energies with conversion rates between 10% and 70% were 156–168 (Wcontr), 178–180 (WICMTEOS), 198–214 (WICTEOS) and 199–204 (WICTTIP) kJ mol−1 at the impregnation level of 20% weight gain. The reaction order values calculated based on the Avrami theory were 0.51–0.57, 0.39–0.51, 0.36–0.47 and 0.28–0.51 in the same order of species indicated above. Accordingly, the dimensional and thermal stability of the wood could be enhanced effectively by the sol-gel process with silicon- and titanium-based alkoxides.

Acknowledgments

This work was financially supported by a research grant from the Ministry of Science and Technology, Taiwan (MOST 105-2622-B-005-002-CC3).

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The Ministry of Science and Technology of Taiwan (MOST 105-2622-B-005-002-CC3).

  3. Employment or leadership: None declared.

  4. Honorarium: None declared.

References

ASTM D1037-06a. Standard Test Methods for Evaluating Properties of Wood-Based Fiber and Particle Panel Materials. ASTM International, West Conshohocken, PA, 2006.Suche in Google Scholar

ASTM D2395-07a. Standard Test Methods for Specific Gravity of Wood and Wood-Based Materials. ASTM International, West Conshohocken, PA, 2007.Suche in Google Scholar

ASTM D4442-07. Standard Test Methods for Direct Moisture Content Measurement of Wood and Wood-Based Materials. ASTM International, West Conshohocken, PA, 2007.Suche in Google Scholar

Bartocci, P., Anca-Couce, A., Slopiecka, K., Nefkens, S., Evic, N., Retschitzegger, S., Barbanera, M., Buratti, C., Cotana, F., Bidini, G., Fantozzi, F. (2017) Pyrolysis of pellets made with biomass and glycerol: kinetic analysis and evolved gas analysis. Biomass Bioenerg. 97:11–19.10.1016/j.biombioe.2016.12.004Suche in Google Scholar

Beck, G., Strohbusch, S., Larnøy, E., Militz, H., Hill, C. (2018a) Accessibility of hydroxyl groups in anhydride modified wood as measured by deuterium exchange and saponification. Holzforschung 72:17–23.10.1515/hf-2017-0059Suche in Google Scholar

Beck, G., Thybring, E.E., Thygesen, L.G., Hill, C. (2018b) Characterization of moisture in acetylated and propionylated radiata pine using low-field nuclear magnetic resonance (LFNMR) relaxometry. Holzforschung, 72:225–233.10.1515/hf-2017-0072Suche in Google Scholar

Boonstra, M.J., Tjeerdsma, B. (2006) Chemical analysis of heat treated softwoods. Eur. J. Wood Prod. 64:204–211.10.1007/s00107-005-0078-4Suche in Google Scholar

Brown, M.E., Maciejewski, M., Vyazovkin, S., Nomen, R. Sempere, J., Burnham, A. (2000) Computational aspects of kinetic analysis. Part A: the ICTAC kinetics project-data, methods and results. Thermochim. Acta 355:125–143.10.1016/S0040-6031(00)00443-3Suche in Google Scholar

Chandrasekaran, A., Ramachandran, S., Subbiah, S. (2017) Determination of kinetic parameters in the pyrolysis operation and thermal behavior of Prosopis juliflora using thermogravimetric analysis. Bioresource Technol. 233:413–422.10.1016/j.biortech.2017.02.119Suche in Google Scholar PubMed

Chaouch, M., Pétrissans, M., Pétrissans, A., Gérardin, P. (2010) Use of wood elemental composition to predict heat treatment intensity and decay resistance of different softwood and hardwood species. Polym. Degrad. Stabil. 95:2255–2259.10.1016/j.polymdegradstab.2010.09.010Suche in Google Scholar

Chi, F.K. (1983) Carbon-containing monolithic glasses via the sol-gel process. Ceram. Eng. Sci. Proc. 4:704‒717.10.1002/9780470320167.ch2Suche in Google Scholar

Gai, C., Dong, Y., Zhang, T. (2013) The kinetic analysis of the pyrolysis of agricultural residue under non-isothermal conditions. Bioresource Technol. 127:298–305.10.1016/j.biortech.2012.09.089Suche in Google Scholar PubMed

Gao, J., Kim, J.S., Terziev, N., Daniel, G. (2016) Decay resistance of softwoods and hardwoods thermally modified by the Thermovouto type thermo-vacuum process to brown rot and white rot fungi. Holzforschung 70:877–884.10.1515/hf-2015-0244Suche in Google Scholar

Gholamiyan, H., Tarmian, A., Ranjbar, Z., Abdulkhani, A., Azadfallah, M., Mai, C. (2016) Silane nanofilm formation by sol-gel processes for promoting adhesion of waterborne and solventborne coatings to wood surface. Holzforschung 70:429–437.10.1515/hf-2015-0072Suche in Google Scholar

Hill, C.A.S. Wood modification: chemical, thermal and other process. John Wiley & Sons, Chichester, UK, 2006.10.1002/0470021748Suche in Google Scholar

Himmel, S., Mai, C. (2016) Water vapour sorption of wood modified by acetylation and formalisation – analysed by a sorption kinetics model and thermodynamic considerations. Holzforschung 70:203‒213.10.1515/hf-2015-0015Suche in Google Scholar

Hübert, T., Unger, B., Bücker, M. (2010) Sol-gel derived TiO2 wood composites. J. Sol-Gel Sci. Technol. 53:384–389.10.1007/s10971-009-2107-ySuche in Google Scholar

Hung, K.-C., Wu, J.-H. (2017) Characteristics and thermal decomposition kinetics of wood-SiO2 composites derived by the sol-gel process. Holzforschung 71:233–240.10.1515/hf-2016-0126Suche in Google Scholar

Hung, K.-C., Yang, C.-N., Yang, T.-C., Wu, T.-L., Chen, Y.-L., Wu J.-H. (2017) Characterization and thermal stability of acetylated slicewood production by alkali-catalyzed esterification. Materials 10:393.10.3390/ma10040393Suche in Google Scholar

Innocenzi, P., Abdirashid, M.O., Guglielmi, M. (1994) Structure and properties of sol-gel coatings from methyltriethoxysilane and tetraethoxysilane. J. Sol-Gel Sci. Technol. 3:47–55.10.1007/BF00490148Suche in Google Scholar

Kamiya, K., Yoko, T., Tanaka, K., Takeuchi, M. (1990) Thermal evolution of gels derived from CH3Si(OC2H5)3 by the sol-gel method. J. Non-Cryst. Solids 121:182‒187.10.1016/0022-3093(90)90128-9Suche in Google Scholar

Kartal, S.N., Yoshimura, T., Imamura, Y. (2004) Decay and termite resistance of boron-treated and chemically modified wood by in situ co-polymerization of allyl glycidyl ether (AGE) with methyl methacrylate (MMA). Int. Biodeterior. Biodegrad. 53:111–117.10.1016/j.ibiod.2003.09.004Suche in Google Scholar

Kartal, S.N., Yoshimura, T., Imamura, Y. (2009) Modification of wood with Si compounds to limit boron leaching from treated wood and to increase termite and decay resistance. Int. Biodeterior. Biodegrad. 63:187–190.10.1016/j.ibiod.2008.08.006Suche in Google Scholar

Lee, X.J., Lee, L.Y., Gan, S., Thangalazhy-Gopakumar, S., Ng, H.K. (2017) Biochar potential evaluation of palm oil wastes through slow pyrolysis: thermochemical characterization and pyrolytic kinetic studies. Bioresource Technol. 236:155–163.10.1016/j.biortech.2017.03.105Suche in Google Scholar PubMed

Li, Y.F., Dong, X.Y., Liu, Y.X., Li, J., Wang, F.H. (2011) Improvement of decay resistance of wood via combination treatment on wood cell wall: swell-bonding with maleic anhydride and graft copolymerization with glycidyl methacrylate and methyl methacrylate. Int. Biodeter. Biodegr. 67:1087–1094.10.1016/j.ibiod.2011.08.009Suche in Google Scholar

Li, Y., Du, L., Kai, C., Huang, R., Wu, Q. (2013) Bamboo and high density polyethylene composite with heat-treated bamboo fiber: thermal decomposition properties. Bioresources 8:900–912.10.15376/biores.8.1.900-912Suche in Google Scholar

Ma, Z., Chen, D., Gu, J., Bao, B., Zhang, Q. (2015) Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA–FTIR and model-free integral methods. Energ. Convers. Manage. 89:251–259.10.1016/j.enconman.2014.09.074Suche in Google Scholar

Miyafuji, H., Saka, S. (1997) Fire-resistant properties in several TiO2 wood-inorganic composites and their topochemistry. Wood Sci. Technol. 31:449–455.Suche in Google Scholar

Miyafuji, H., Saka, S. (2001) Na2O-SiO2 wood-inorganic composites prepared by the sol-gel process and their fire-resistant properties. J. Wood Sci. 47:483–489.10.1007/BF00767902Suche in Google Scholar

Miyafuji, H., Kokaji, H., Saka, S. (2004) Photostable wood-inorganic composites prepared by the sol-gel process with UV absorbent. J. Wood Sci. 50:130–135.10.1007/s10086-003-0550-xSuche in Google Scholar

Moghaddam, M., Wålinder, M.E.P., Claesson, P.M., Swerin, A. (2016) Wettability and swelling of acetylated and furfurylated wood analyzed by multicycle Wilhelmy plate method. Holzforschung 70:69‒77.10.1515/hf-2014-0196Suche in Google Scholar

Nocuń, M, Gajerski, R., Siwulski S. (2005) Thermal decomposition of silica-methyltrimethoxysilane hybrid glasses studied by mass spectrometry. Opt. Appl. 35:901‒906.Suche in Google Scholar

Poletto, M., Zattera, A.J., Santana, R.M.C. (2012) Thermal decomposition of wood: kinetics and degradation mechanisms. Bioresource Technol. 126:7–12.10.1016/j.biortech.2012.08.133Suche in Google Scholar PubMed

Pries, M., Mai, C. (2013) Fire resistance of wood treated with a cationic silica sol. Eur. J. Wood Prod. 71:237–244.10.1007/s00107-013-0674-7Suche in Google Scholar

Qin, C., Zang, W. (2012) Antibacterial properties of titanium alkoxide/poplar wood composite prepared by sol-gel process. Mater. Lett. 89:101–103.10.1016/j.matlet.2012.08.089Suche in Google Scholar

Rowell, R.M., LeVan-Green, S.L. Handbook of wood chemistry and wood composites. Taylor & Francis, New York, 2005.10.1201/9780203492437Suche in Google Scholar

Saka, S., Yakake, Y. (1993) Wood-inorganic composites prepared by sol-gel process III. Chemically-modified wood-inorganic composites. Mokuzai Gakkaishi 39:308–314.Suche in Google Scholar

Saka, S., Ueno, T. (1997) Several SiO2 wood-inorganic composites and their fire-resisting properties. Wood Sci. Technol. 31:457–466.10.1007/BF00702568Suche in Google Scholar

Saka, S., Sasaki, M., Tanahashi, M. (1992) Wood-inorganic composites prepared by sol-gel processing I. Wood-inorganic composites with porous structure. Mokuzai Gakkaishi 30:1043–1049.Suche in Google Scholar

Sakka, S., Miyafuji, H. Handbook of Sol-Gel Science and Technology: Processing, Characterization, and Applications. Volume III: Applications of Sol-Gel Technology. Kluwer Academic Publishers, Boston, 2005.Suche in Google Scholar

Shabir Mahr, M., Hübert, T., Schartel, B., Bahr, H., Sabel, M., Militz, H. (2012) Fire retardancy effects in single and double layered sol-gel derived TiO2 and SiO2-wood composites. J. Sol-Gel Sci. Technol. 64:452–464.10.1007/s10971-012-2877-5Suche in Google Scholar

Shabir Mahr, M., Hübert, T., Stephan, I., Bücker, M., Militz, H. (2013) Reducing copper leaching from treated wood by sol-gel derived TiO2 and SiO2 depositions. Holzforschung 67:429–435.10.1515/hf-2012-0105Suche in Google Scholar

Strandberg, A., Holmgren, P., Broström, M. (2017) Predicting fuel properties of biomass using thermogravimetry and multivariate data analysis. Fuel Process. Technol. 156:107–112.10.1016/j.fuproc.2016.10.021Suche in Google Scholar

Tshabalala, M.A., Libert, R., Schaller, C.M. (2011) Photostability and moisture uptake properties of wood veneers coated with a combination of thin sol-gel films and light stabilizers. Holzforschung 65:215–220.10.1515/hf.2011.022Suche in Google Scholar

Vuthaluru, H.B. (2004) Investigations into the pyrolytic behavior of coal/biomass blends using thermogravimetric analysis. Bioresource Technol. 92:187–195.10.1016/j.biortech.2003.08.008Suche in Google Scholar PubMed

Wang, X., Liu, J., Chai, Y. (2012) Thermal, mechanical, and moisture absorption properties of wood-TiO2 composites prepared by a sol-gel process. Bioresources 7:893–901.Suche in Google Scholar

Yao, F., Wu, Q., Lei, Y., Guo, W., Xu, Y. (2008) Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym. Degrad. Stabil. 93:90–98.10.1016/j.polymdegradstab.2007.10.012Suche in Google Scholar

Yoon, J.D., Park, K.Y., Jang, H.D. (2003) Comparison of titania particles between oxidation of titanium tetrachloride and thermal decomposition of titanium tetraisopropoxide. Aerosol Sci. Technol. 37:621‒627.10.1080/02786820300907Suche in Google Scholar

Zaharescu, M., Jitianu, A., Brãileanu, A., Madarász, J., Novák, C.S., Pokol, G. (2003) Composition and thermal stability of SiO2-based hybrid materials TEOS-MTEOS system. J. Therm. Anal. Calorim. 71:421‒428.10.1023/A:1022883221776Suche in Google Scholar

Zhang, X., Lei, H., Zhu, L., Zhu, X., Qian, M., Yadavalli, G., Wu, J., Chen, S. (2016) Thermal behavior and kinetic study for catalytic co-pyrolysis of biomass with plastics. Bioresource Technol. 220:233–238.10.1016/j.biortech.2016.08.068Suche in Google Scholar PubMed

Received: 2017-9-27
Accepted: 2017-12-18
Published Online: 2018-1-17
Published in Print: 2018-4-25

©2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 13.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hf-2017-0156/html
Button zum nach oben scrollen