Startseite Water sorption hysteresis in wood: I review and experimental patterns – geometric characteristics of scanning curves
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Water sorption hysteresis in wood: I review and experimental patterns – geometric characteristics of scanning curves

  • Jingbo Shi ORCID logo EMAIL logo und Stavros Avramidis
Veröffentlicht/Copyright: 7. Januar 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The origin of sorption hysteresis in the wood-water system is still under debate. In nanoporous-fluid systems, in general, hysteresis is explained as the manifestation of metastable states in a single pore-fluid system and that is further complicated by the pore connectivity. Cell walls are considered as micro-mesoporous materials and capillary condensation in the entire hygroscopic region is proposed as an alternative sorption mechanism. In the present work, the woods of Douglas-fir, aspen and western red cedar were in focus and the pore connectivity has been investigated by observing five experimentally generated hysteresis patterns comprised by up to 4th scanning curves at 25 and 40°C. Special attention was given to the congruency property from one pattern as it is known from the literature that deviation from this property can reveal the extent of pore connectivity. Consistent patterns were found for the species-temperature combinations. Further, the high extent of congruency property indicated the dominance of independent cell wall pores.

  1. Funding: Natural Sciences and Engineering Council of Canada (NSERC) (Discovery Grant RGPIN-2016-04325).

References

Ahlgren, L. (1972) Moisture fixation in porous building materials. Report 36, Institutionen förbyggnadsteknik, Tekniska högskolan I Lund, Sweden, pp. 200.Suche in Google Scholar

Avramidis, S. (1997) The basics of sorption. In: International Conference on Wood-Water Relations, June 16–17, Copenhagen, Denmark.Suche in Google Scholar

Carmeliet, J., De Wit, M.H.D., Janssen, H. (2005) Hysteresis and moisture buffering of wood. Symposium of Building Physics in the Nordic Countries, June 13–15th, Reykjavík, Iceland, pp. 55–62.Suche in Google Scholar

Chen, C.M., Wangaard, F.F. (1968) Wettalility and the hysteresis effect in the sorption of water vapour by wood. Wood Sci. Technol. 2:177–187.10.1007/BF00350907Suche in Google Scholar

Child, T.F. (1972) Pulsed n.m.r. study of molecular motion and environment of sorbed water on cellulose. Polymer 13:259–264.10.1016/0032-3861(72)90004-3Suche in Google Scholar

Chirkova, J., Andersons, B., Andersone, I. (2007) Study of the structure of wood-related biopolymers by sorption methods. BioResources 4:1044–1057.10.15376/biores.4.3.1044-1057Suche in Google Scholar

Coasne, B., Gubbins, K.E., Pellenq, R.J. (2005) Domain theory for capillary condensation hysteresis. Phys. Rev. B. 72:024304.10.1103/PhysRevB.72.024304Suche in Google Scholar

Derome, D., Derluyn, H., Zillig, W., Carmeliet, J. (2008) Model for hysteretic moisture behaviour of wood. Proceedings of the Nordic Symposium on Building Physics. Vol. 2:959–966.Suche in Google Scholar

Enderby, J.A. (1956) The domain model of hysteresis. Part 2. – Interacting domains. Trans. Faraday Soc. 52:106–120.10.1039/TF9565200106Suche in Google Scholar

Everett, D.H. (1955) A general approach to hysteresis. Part 4. An alternative formulation of the domain model. Trans. Faraday Soc. 51:1551–1557.10.1039/tf9555101551Suche in Google Scholar

Everett, D.H., Smith, F.W. (1954) A general approach to hysteresis. Part 2: Development of the domain theory. Trans. Faraday Soc. 50:187–197.10.1039/tf9545000187Suche in Google Scholar

Everett, D.H., Whitton, W.I. (1952) A general approach to hysteresis. Trans. Faraday Soc. 48:749–757.10.1039/tf9524800749Suche in Google Scholar

Frandsen, H.L., Svensson, S., Damkilde, L. (2007) A hysteresis model suitable for numerical simulation of moisture content in wood. Holzforschung 61:175–181.10.1515/HF.2007.031Suche in Google Scholar

Frenkel, D., Smit, B. Understanding molecular simulations: from algorithms to applications. Academic Press, New York, 1996.Suche in Google Scholar

Froix, M.F., Nelson, R. (1975) The interaction of water with cellulose from nuclear magnetic resonance relaxation times. Macromolecules 8:726–730.10.1021/ma60048a011Suche in Google Scholar

Garcia-Martinez, J., Xiao, C., Cychosz, K.A., Li, K., Wan, W., Zou, X., Thommes, M. (2014) Evidence of intracrystalline mesostructured porosity in zeolites by advanced gas sorption, electron tomography and rotation electron diffraction. Chem. Cat. Chem. 6:3110–3115.10.1002/cctc.201402499Suche in Google Scholar

Gregg, S.J., Sing, K.S.W. Adsorption, Surface Area and Porosity. Academic Press, New York, 1982.Suche in Google Scholar

Grosman, A., Ortega, C. (2005) Nature of capillary condensation and evaporation processes in ordered porous materials. Langmuir. 21:10515–10521.10.1021/la051030oSuche in Google Scholar PubMed

Hartley, I.D. Characterization of water in wood below the fibre saturation point, Ph.D. Thesis, University of British Columbia, Canada, 1994.Suche in Google Scholar

Hartley, I.D., Avramidis, S. (1993) Analysis of the wood sorption isotherm using clustering theory. Holzforschung 47:163–167.10.1515/hfsg.1993.47.2.163Suche in Google Scholar

Hietala, S., Maunu, S.L., Sundholm, F., Jämsä, S., Viitaniemi, P. (2002) Structure of thermally modified wood studied by liquid state NMR measurements. Holzforschung 56:522–528.10.1515/HF.2002.080Suche in Google Scholar

Hill, C.A.S. Wood Modification: Chemical, Thermal and Other Process. John Wiley & Sons. Ltd, England, 2006.10.1002/0470021748Suche in Google Scholar

Hill, C.A.S., Norton, A., Newman, G. (2009) The water vapor sorption behavior of natural fibers. J. Appl. Polym. Sci. 112:1524–1537.10.1002/app.29725Suche in Google Scholar

Hill, C.A.S., Norton, A.J., Newman, G. (2010) The water vapor sorption properties of Sitka spruce determined using a dynamic vapor sorption apparatus. Wood Sci. Technol. 44:497–514.10.1007/s00226-010-0305-ySuche in Google Scholar

Hill, C.A.S., Ramsay, J., Keating, B., Laine, K., Rautkari, L., Hughes, M., Constant, B. (2012) The water vapour sorption properties of thermally modified and densified wood. J. Mater. Sci. 47:3191–31977.10.1007/s10853-011-6154-8Suche in Google Scholar

Hill, C.A.S., Ramsay, J., Gardiner, B. (2015) Variability in water vapour sorption isotherm in Japanese larch (Larix kaempferi Lamb.) – earlywood and latewood influences. Int. Wood Prod. J. 6:53–59.10.1179/2042645314Y.0000000090Suche in Google Scholar

Jalaludin, Z. The water vapour sorption behaviour of wood, PhD Thesis, Edinburgh Napier University, UK, 2012.Suche in Google Scholar

Kelley, S.S., Rials, T.G., Glasser, W.G. (1987) Relaxation behaviour of the amorphous components of wood. J. Mater. Sci. 22:617–624.10.1007/BF01160778Suche in Google Scholar

Kellogg, R.M., Wangaard, F.F. (1969) Variation in the cell-wall density of wood. Wood Fiber Sci. 1:80–204.Suche in Google Scholar

Kelsey, K.E. (1957) The sorption of water vapour by wood. Aust. J. Appl. Sci. 8:42–54.Suche in Google Scholar

Kelsey, K.E., Clark, L.E. (1956) The heat of sorption of water by wood. Aust. J. Appl. Sci. 7:160–175.Suche in Google Scholar

Kittel, C., Kroemer, H. Thermal physics. W. H. Freeman and Company, New York, 1980.Suche in Google Scholar

Kojiro, J., Miki, T., Sugimoto, H., Nakajima, M., Kanayama, K. (2010) Micropores and mesopores in the cell wall of dry wood. J. Wood Sci. 56:107–111.10.1007/s10086-009-1063-zSuche in Google Scholar

Kruk, M., Jaroniec, M., Sayari, A. (1997) Adsorption study of surface and structural properties of MCM-41 materials of different pore sizes. J. Phys. Chem. B. 101:583–589.10.1021/jp962000kSuche in Google Scholar

Kymäläinen, M., Rautkari, L., Hill, C.A.S. (2015) Sorption behaviour of torrefied wood and charcoal determined by dynamic vapour sorption. J. Mater. Sci. 50:7673–7680.10.1007/s10853-015-9332-2Suche in Google Scholar

Lowell, S., Shield, J.E., Thomas, M.A., Thommes, M. Characterization of porous solids and powders: surface area, pore size and density. Kluwer Academic Publishers, Boston, 2004.10.1007/978-1-4020-2303-3Suche in Google Scholar

Lilly, M.P., Hallock, R.B. (2001) Probing the internal structure of nuclepore with hysteretic capillary condensation. Phys. Rev. B. 63:174503.10.1103/PhysRevB.63.174503Suche in Google Scholar

Lilly, M.P., Finley, P.T., Hallock, R.B. (1993) Memory, congruence, and avalanche events in hysteretic capillary condensation. Phys. Rev. Lett. 71:4186.10.1103/PhysRevLett.71.4186Suche in Google Scholar

Mayergoyz, I.D. Mathematical Models of Hysteresis. Springer, New York, 1991.10.2172/6911694Suche in Google Scholar

Merakeb, S., Dubois, F., Petit, C. (2009) Modelling of the sorption hysteresis for wood. Wood Sci. Technol. 43:575–589.10.1007/s00226-009-0249-2Suche in Google Scholar

Miki, T., Sugimoto, H., Kojiro, K., Furuta, Y., Kanayama, K. (2012) Thermal behaviors and transitions of wood detected by temperature-modulated differential scanning calorimetry. J Wood Sci. 58:300–308.10.1007/s10086-012-1259-5Suche in Google Scholar

Mullins, E.J., McKnight, T.S. Canadian woods: their properties and uses (Third Edition). University of Toronto Press, Toronto, 2000.Suche in Google Scholar

Neimark, A.V., Ravikovitch, P.I. (2001) Capillary condensation in MMS and pore structure characterization. Microp. Mesop. Mat. 44:697–707.10.1016/S1387-1811(01)00251-7Suche in Google Scholar

Neimark, A.V., Ravikovitch, P.I., Grün, M., Schüth, F., Unger, K.K. (1998) Pore size analysis of MCM-41 type adsorbents by means of nitrogen and argon adsorption. J. Colloid Interface Sci. 207:159–169.10.1006/jcis.1998.5748Suche in Google Scholar PubMed

Neimark, A.V., Ravikovitch, P.I., Vishnyakov, A. (2000) Adsorption hysteresis in nanopores. Phys. Rev. E. 62:R1493.10.1103/PhysRevE.62.R1493Suche in Google Scholar PubMed

Ohba, T., Kaneko, K. (2007) Cluster-associated filling of water molecules in slit-shaped graphitic nanopores. Mol. Phys. 105:139–145.10.1080/00268970701192081Suche in Google Scholar

Olek, W., Majka, J., Czajkowski, L. (2013) Sorption isotherms of thermally modified wood. Holzforschung 67:183–191.10.1515/hf-2011-0260Suche in Google Scholar

Östberg, G., Salmen, L., Terlecki, J. (1990) Softening temperature of moist wood measured by differential scanning calorimetry. Holzforschung 44:223–225.10.1515/hfsg.1990.44.3.223Suche in Google Scholar

Papadopoulos, A.N. (2005) An investigation of the cell wall ultrastructure of the sapwood of then Greek wood species by means of chemical modification. Holz als Roh- und Weskstoff 63:437–441.10.1007/s00107-005-0038-zSuche in Google Scholar

Patera, A., Derluyn, H., Derome, D., Carmeliet, J. (2016) Influence of sorption hysteresis on moisture transport in wood. Wood Sci. Technol. 50:259–283.10.1007/s00226-015-0786-9Suche in Google Scholar

Popescu, C.M., Hill, C.A.S. (2013) The water vapour adsorption–desorption behaviour of naturally aged Tilia cordata Mill. Wood. Polym. Degrad. Stabil. 98:1804–1813.10.1016/j.polymdegradstab.2013.05.021Suche in Google Scholar

Popescu, C.M., Hill, C.A.S., Curling, S., Ormondroyd, G., Xie, Y. (2014) The water vapour sorption behaviour of acetylated birch wood: how acetylation affects the sorption isotherm and accessible hydroxyl content. J. Mater. Sci. 49:2362–2371.10.1007/s10853-013-7937-xSuche in Google Scholar

Peralta, P.N. (1995a) Sorption of moisture by wood within a limited range of relative humidities. Wood Fiber Sci. 27:13–21.Suche in Google Scholar

Peralta, P.N. (1995b) Modelling wood moisture sorption hysteresis using the independent-domain theory. Wood Fiber Sci. 27:250–257.Suche in Google Scholar

Peralta, P.N. (1996) Moisture sorption hysteresis and the independent-domain theory: the moisture distribution function. Wood Fiber Sci. 28:406–410.Suche in Google Scholar

Pidgeon, L.M., Maass, O. (1930) The adsorption of water by wood. J. Am. Chem. Soc. 52:1053–1069.10.1021/ja01366a033Suche in Google Scholar

Ramírez, A., Sierra, L. (2006) Simulation of nitrogen sorption processes in materials with cylindrical mesopores: hysteresis as a thermodynamic and connectivity phenomenon. Chem. Eng. Sci. 61:4233–4241.10.1016/j.ces.2006.02.002Suche in Google Scholar

Rautkari, L., Hill, C.A.S., Hurling, S., Jalaludin, Z., Ormondroyd, G. (2013) What is the role of the accessibility of wood hydroxyl groups in controlling moisture content. J. Mater. Sci. 48:6352–6356.10.1007/s10853-013-7434-2Suche in Google Scholar

Ravikovitch, P.I., Domhnaill, S.Ó., Neimark, A.V., Schüth, F., Unger, K.K. (1995) Capillary hysteresis in nanopores: theoretical and experimental studies of nitrogen adsorption on MCM-41. Langmuir. 11:4765–4772.10.1021/la00012a030Suche in Google Scholar

Rojas, F., Kornhauser, I., Felipe, C., Cordero, S. (2001) Everett’s sorption hysteresis domain theory revisited from the point of view of the dual site-bond model of disordered media. J. Mol. Catal. A Chem. 167:141–155.10.1016/S1381-1169(00)00501-XSuche in Google Scholar

Salmén, L. (2004) Micromechanical understanding of the cell-wall structure. Comptes Rendus Biologies. 327:873–880.10.1016/j.crvi.2004.03.010Suche in Google Scholar PubMed

Salmen, L., Olsson, A.M., Stevanic, J., Simonović, J., Radotić, K. (2011) Structural organization of the wood polymers in the wood fibre structure. BioResources. 7:521–532.10.15376/biores.7.1.521-532Suche in Google Scholar

Seborg, C.O., Stamm, A.J. (1931) Sorption of water vapor by paper-marking materials I – Effect of beating. Ind. Eng. Chem. 23:1271–1275.10.1021/ie50263a018Suche in Google Scholar

Skaar, C. Water in wood. Syracuse University Press, New York, 1972.Suche in Google Scholar

Spalt, H.A. (1958) The fundamentals of water vapor sorption by wood. F. P. J. 8:288–295.Suche in Google Scholar

Stamm, A.J. Wood and cellulose science. The Ronald Press Company, New York, 1964.Suche in Google Scholar

Stevanic, J.S., Salmén, L. (2009) Orientation of the wood polymers in the cell wall of spruce wood fibres. Holzforschung 63:497–503.10.1515/HF.2009.094Suche in Google Scholar

Stone, J.E., Scallan, A.M. (1968) The effect of component removal upon the porous structure of the cell wall of wood. Part III. A comparison between the sulphite and kraft processes. Pulp Paper Mag. Can. 69:69–74.Suche in Google Scholar

Suchy, M., Virtanen, J., Kontturi, E., Vuorinen, T. (2010a) Impact of drying on wood ultrastructure observed by deuterium exchange and photoacoustic FT-IR spectroscopy. Biomacromolecules 11:515–520.10.1021/bm901268jSuche in Google Scholar PubMed

Suchy, M., Virtanen, J., Kontturi, E., Vuorinen, T. (2010b) Impact of drying on wood ultrastructure: similarities in cell wall alteration between native wood and isolated wood-based fibers. Biomacromolecules 11:2161–2168.10.1021/bm100547nSuche in Google Scholar PubMed

Tanaka, H., Hiratsuka, T., Nishiyama, N., Mori, K., Miyahara, M.T. (2013) Capillary condensation in mesoporous silica with surface roughness. Adsorption 19:631–641.10.1007/s10450-013-9486-7Suche in Google Scholar

Taniguchi, T., Harada, H., Nakato, K. (1978) Determination of water adsorption sites in wood by a hydrogen – deuterium exchange. Nature 72:230–231.10.1038/272230a0Suche in Google Scholar

Thommes, M., Köhn, R., Fröba, M. (2000) Sorption and pore condensation behavior of nitrogen, argon, and krypton in mesoporous MCM-48 silica materials. J. Phys. Chem. B. 104:7932–7943.10.1021/jp994133mSuche in Google Scholar

Urquhart, A.R. (1929) The mechanism of the adsorption of water by cotton. J. Tex. Inst. 20:T125–T132.10.1080/19447022908661485Suche in Google Scholar

Xie, Y., Hill, C.A.S., Xiao, Z., Mai, C., Militz, H. (2011) Dynamic water vapor sorption properties of wood treated with glutaraldehyde. Wood Sci. Technol. 45:49–61.10.1007/s00226-010-0311-0Suche in Google Scholar

Zillig, W. (2009) Moisture transport in wood using a multiscale approach. Ph.D. Thesis, Katholieke Universiteit Leuven, Belgium.Suche in Google Scholar

Wootters, A.H., Hallock, R.B. (2000) Hysteretic behavior of superfluid helium in Anopore. J. Low Temp. Phys. 121:549–554.10.1023/A:1017599024229Suche in Google Scholar

Received: 2016-7-26
Accepted: 2016-11-29
Published Online: 2017-1-7
Published in Print: 2017-4-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 20.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hf-2016-0120/html
Button zum nach oben scrollen