Home Chemical effects of a mild torrefaction on the wood of eight Eucalyptus species
Article
Licensed
Unlicensed Requires Authentication

Chemical effects of a mild torrefaction on the wood of eight Eucalyptus species

  • Solange de Oliveira Araújo EMAIL logo , Duarte M. Neiva , Jorge Gominho ORCID logo , Bruno Esteves and Helena Pereira
Published/Copyright: March 25, 2017
Become an author with De Gruyter Brill

Abstract

The torrefaction is a thermal pre-treatment to improve biomass quality for biofuel applications. In this study, the effects of a mild torrefaction (T) on eight eucalypt species (Eucalyptus botryoides, E. globulus, E. grandis, E. maculata, E. propinqua, E. rudis, E. saligna and E. viminalis) have been compared. Namely, the mass loss (ML), the equilibrium moisture content (EMC), density and chemical composition were determined and FTIR spectra were recorded of the initial and torrefied woods (TWs). The average ML was 11% and the heat-treated woods had an overall 10% density decrement. All the TW had 50% lower EMC compared to untreated wood samples (W). Elemental composition showed that carbon content increased from 48% to 53% and the oxygen/carbon ratio decreased from 0.80 to 0.65. The chemical changes induced by T included an increment of extractives, a 20% higher lignin content and a 16% lower holocellulose content in relation to W. The hemicelluloses modification is manifested by a decrease of xylose, galactose, and acetyl groups in TWs. The fourier transform infrared (FTIR) spectra of the different wood species were very similar, and reflected in a uniform manner the chemical changes upon T. Because of the similar reaction of the eucalypt species, they can also be used in form of mixed eucalypt feedstock as biofuel.

Acknowledgements

The authors wish to thank the Federal University of Viçosa, CAPES (Coordination for the Development of Higher Level Personnel) and CNPq (National Council for Scientific and Technological Development) for the financial support given to the first author to carry out this work. The Forest Research Centre (CEF) is a research unit funded by FCT (Fundação para a Ciência e a Tecnologia, Portugal) through the strategic project AGR/UI0239/2013. The authors also thank the Industry Santos & Santos belonging to the group Catarino for the heat treatment of the wood samples.

References

ABNT – Associação Brasileira de Normas Técnicas. NBR 7190: design of timber structures, Rio de Janeiro, 1997.Search in Google Scholar

Almeida, G., Brito, J.O., Perré, P. (2010) Alterations in energy properties of eucalyptus wood and bark subjected to torrefaction: the potential of ML as a synthetic indicator. Biores. Technol. 101:9778–9784.10.1016/j.biortech.2010.07.026Search in Google Scholar PubMed

ASTM International. Standard Test Method for Direct Moisture Content Measurement of Wood and wood-Based Materials, American Society for Testing and Materials, 2002.Search in Google Scholar

ASTM D 5373 – 08. Standard Test Method for Instrumental Determination of Carbon, Hydrogen and Nitrogen in Laboratory samples of Coal, 2008.Search in Google Scholar

Barrichelo, L.E.G., Foelkel, C.E.B. (1976) Estudos para produção de celulose sulfato de seis espécies de eucalipto. IPEF 12:77–95.Search in Google Scholar

Batista, D.C., Tomaselli, I., Klitzke, R.J. (2011) Effect of time and temperature of thermal modification on the reduction of maximum swelling of Eucalyptus grandis Hill ex Maiden wood. Ciência Florestal 21:533–540.10.5902/198050983810Search in Google Scholar

Bergman, P.C.A., Boersma, A.R., Kiel, J.H.A., Prins, M.J., Ptasinski, K.J., Janssen, F.J.J.G. (2004) Torrefaction for entrained flow gasification of biomass. In: Second world biomass conference. Eds. Van Swaaij, W.P.M., Fjallstrom, T., Helm, P., Grassi, A. ETA-Florence and WIP-Munich, Rome, Italy. pp. 679–682.Search in Google Scholar

Bergman, P.C.A., Boersma, A.R., Zwart, R.W.R., Kiel, J.H.A. (2005) Torrefaction for biomass co-firing in existing coal-fired power stations. ECN Biomass, 2005. Available at: http://www.ecn.nl/docs/library/report/2005/c05013.pdf. Accessed 10.12.15.Search in Google Scholar

Boonstra, M.J., Tjeerdsma, B.F. (2006) Chemical analysis of heat treated softwoods. Holz Roh Werks. 64:204–211.10.1007/s00107-005-0078-4Search in Google Scholar

Boonstra, M.J., Acker, J., Kegel, E., Stevens, M. (2007) Optimisation of a two-stage heat treatment process: durability aspects. Wood Sci. Techno. 41:31–57.10.1007/s00226-006-0087-4Search in Google Scholar

Chen, W.H., Kuo, P.C. (2011) Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass. Energy 36:803–811.10.1016/j.energy.2010.12.036Search in Google Scholar

Dubey, M.K., Pang, S., Chauhan, S., Walker, J. (2016) Dimensional stability, fungal resistance and mechanical properties of radiata pine after combined thermo-mechanical compression and oil heat-treatment. Holzforschung 70:793–800.10.1515/hf-2015-0174Search in Google Scholar

Dutt D., Tyagi C.H. (2011) Comparison of various Eucalyptus species for their morphological chemical, pulp and paper making characteristics. Indian J. Chem. Techn. 18:145–151.Search in Google Scholar

Dutta, A., Leon, M.A. (2012) Pros and cons of torrefaction of woody biomass. University of Guelph. Available at: http://www.agrireseau.qc.ca/references/32/presentations_guelph/2Torrefaction%20-%20Pros%20and%20Cons%20By%20Mathias%20Leon%20UoG.pdf. Accessed march 2015.Search in Google Scholar

Esteves, B., Pereira, H. (2009) Wood modification by heat treatment: a review. BioResources 4:370–404.10.15376/biores.4.1.EstevesSearch in Google Scholar

Esteves, B., Velez Marques, A., Dominigos, I., Pereira, H. (2007) Influence of steam heating on the properties of pine (Pinus pinaster) and eucalypt (Eucalyptus globulus) wood. Wood Sci. Technol. 41:193–207.10.1007/s00226-006-0099-0Search in Google Scholar

Esteves, B., Graça, J., Pereira, H. (2008a) Extractive composition and summative chemical analysis of thermally treated eucalypt wood. Holzforschung 62:344–351.10.1515/HF.2008.057Search in Google Scholar

Esteves, B., Velez Marques, A., Domingos, I., Pereira, H. (2008b) Heat induced colour changes of pine (Pinus pinaster) and eucalypt (Eucalyptus globulus) wood. Wood Sci. Techn. 42:369–384.10.1007/s00226-007-0157-2Search in Google Scholar

Felfri, F.F., Luengo, C.A., Suarez, J.A., Beaton, P.A. (2005) Wood briquette torrefaction. Energy Sustain. Dev. 9:19–22.10.1016/S0973-0826(08)60519-0Search in Google Scholar

Finnish ThermoWood Association. ThermoWood Handbook. Helsinki, Finland, 2003.Search in Google Scholar

Foelkel, C.E.B., Barrichelo, L.E.G., Milanez, A.F. (1975) Estudo comparativo das madeiras de Eucalyptus saligna, E. paniculata, E. citridora, E. maculata e E. tereticornis para produção de celulose sulfato. IPEF 10:17–37.Search in Google Scholar

Gao, J., Kim, J.S., Terziev, N., Daniel, G. (2016) Decay resistance of softwoods and hardwoods thermally modified by the thermovouto type thermo-vacuum process to brown rot and white rot fungi. Holzforschung 70:877–884.10.1515/hf-2015-0244Search in Google Scholar

Hakkou, M., Pétrissans, M., Zoulalian, A., Gérardin, P. (2005) Investigation of wood wettability changes during heat treatment on the basis of chemical analysis. Polym. Degrad. Stab. 89:1–5.10.1016/j.polymdegradstab.2004.10.017Search in Google Scholar

Haselein, C.R., Cechin, E., Santini, E.J., Gatto, D.A. (2000) Características estruturais da madeira de Pinus elliottii Engelm aos 30 anos de idade. Ciência Florestal 2:135–144.10.5902/19805098487Search in Google Scholar

Kim, J.S., Gao, J., Terziev, N., Allegretti, O., Daniel, G. (2015) Chemical and ultrastructural changes of ash wood thermally modified (TMW) using the thermo-vacuum process: II. Immunocytochemical study of the distribution of noncellulosic polysaccharides. Holzforschung 69:615–625.10.1515/hf-2014-0149Search in Google Scholar

Khalid, I., Wahab, R., Sudin, M., Sulaiman, O., Hassan, A., Alamjuri, R.H., Mojiol, A.R. (2010) Chemical changes in 15 year old cultivated acacia hybrid oil-heat treated at 180, 200, and 220°C. Int. J. Chemistry 2:97–107.10.5539/ijc.v2n1p97Search in Google Scholar

Knapic, S., Pirralho, M., Louzada, J.L., Pereira, H. (2014) Early assessment of density features for 19 Eucalyptus species using X-ray microdensitometry in a perspective of potential biomass production. Wood Sci. Technol. 48:37–49.10.1007/s00226-013-0579-ySearch in Google Scholar

Kocaefe, D., Poncsak, S., Boluk, Y. (2008) Effect of thermal treatment on the chemical composition and mechanical properties of birch and aspen. Bioresources 3:517–537.10.15376/biores.3.2.517-537Search in Google Scholar

Neiva, D., Fernandes, L., Araújo, S.O., Lourenço, A., Gominho, J., Simões, R., Pereira, H. (2015) Chemical composition and kraft pulping potential of 12 eucalypt species. Ind. Crops Prod. 66:89–95.10.1016/j.indcrop.2014.12.016Search in Google Scholar

Nguila, I.G., Pétrissans, M., Pétrissans, A., Gérardin, P. (2009) Elemental composition of wood as a potential marker to evaluate heat treatment intensity. Polymer Degrad. Stability 94:365–368.10.1016/j.polymdegradstab.2008.12.003Search in Google Scholar

Nunes, L.J.R., Matias, J.C.O., Catalão, J.P.S. (2014) A review on torrefied biomass pellets as a sustainable alternative to coal in power generation. Renew. Sust. Energy Rev. 40:153–160.10.1016/j.rser.2014.07.181Search in Google Scholar

Pereira, H. (1988) Variability in the chemical composition of plantation eucalypts (Eucalyptus globulus Labill.). Wood Fiber Sci. 20:82–90.Search in Google Scholar

Pereira, H., Miranda, I., Gominho, J., Tavares, F., Quilhó, T., Graça, J., Rodrigues, J., Shatalov, A., knapic, S. (2010) Qualidade e utilização tecnológica do eucalipto (Eucalyptus globulus). Universidade de Lisboa. Instituto Superior de Agronomia, Centro de Estudos Florestais, Lisbon, ISBN 978-972-97874-3-0.Search in Google Scholar

Pétrissans, M., Gérardin, P., El Bakali, I., Serraj, M. (2005) Wettability of heat-treated wood. Holzforschung 57:301–307.10.1515/HF.2003.045Search in Google Scholar

Popescu, C.M., Popescu, M.C., Singurel, G., Vasile, C., Argyropoulos, D.S., Willför, S. (2007) Spectral characterization of eucalyptus wood. Appl. Spectrosc. 61:1168–1177.10.1366/000370207782597076Search in Google Scholar PubMed

Rockwood, L.D., Rudie, W.A., Ralph, S.A., Zhu, Y.J., Winandy, E.J. (2008) Energy product options for Eucalyptus species grown as short rotation woody crops. Int. J. Mol. Sci. 9:1361–1378.10.3390/ijms9081361Search in Google Scholar PubMed PubMed Central

Rousset, P., Lapierre, C., Pollet, B., Quirino, W., Perre, P. (2009) Effect of severe thermal treatment on spruce and beech wood lignins. Ann. For. Sci. 66:110–118.10.1051/forest/2008078Search in Google Scholar

Santos, D.V.B., Moura, L.F., Brito, O.T. (2014) Effect of heat treatment on color, weight loss, specific gravity and equilibrium moisture content of two low market valued tropical woods. Wood Res. 59:4253–4264.Search in Google Scholar

Schwanninger, M., Rodrigues, J.C., Pereira, H., Hinterstoisser, B. (2004) Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib Spectrosc 36:23–40.10.1016/j.vibspec.2004.02.003Search in Google Scholar

Shaw, M., Tabil, L. (2007) Compression and relaxation characteristics of selected biomass grinds. ASABE Paper No. 076183. St. Joseph, Mich.: ASABE.Search in Google Scholar

Sebio-Punal, T., Naya, S., Lopez Beceiro, J., Tarrio-Saavedra, J., Artiaga, R. (2012) Thermogravimetric analysis of wood, holocellulose, and lignin from five wood species. J. Therm. Anal. Calorim. 109:1163–1167.10.1007/s10973-011-2133-1Search in Google Scholar

Sen, A., Miranda, I., Pereira, H. (2012) Temperature-induced structural and chemical changes in cork from Quercus cerris. Ind. Crops Prod. 37:508–513.10.1016/j.indcrop.2011.07.028Search in Google Scholar

Sonderegger, W., Mannes, D., Kaestner, A., Hovind, J., Lehmann, E. (2015) On-line monitoring of hygroscopicity and dimensional changes of wood during thermal modification by means of neutron imaging methods. Holzforschung 69:87–95.10.1515/hf-2014-0008Search in Google Scholar

Spiridon, I., Popa, V.I. (2008) Hemicelluloses: major sources, properties and applications. In: Polymers and Composites from Renewable Resources. Eds. Belgacen, N.M., Gandini, A., Monomers, Elsevier, Amsterdam, pp. 289–304.10.1016/B978-0-08-045316-3.00013-2Search in Google Scholar

Van der Stelt, M.J.C., Gerhauser, H., Kiel, J.H.A., Ptasinski, K.J. (2011) Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass Energy 35:3748–3762.10.1016/j.biombioe.2011.06.023Search in Google Scholar

Vilas Boas, M.A. (2011) Effect of thermal treatment of wood in the production of briquettes. Dissertation Federal University of Viçosa.Search in Google Scholar

Vital, B.R., Jesus, R.M., de Valente, O.F. (1986) Efeito da constituição química e da densidade da madeira de clones de Eucalyptus grandis na produção de carvão vegetal. Revista Árvore, 10:151–160.Search in Google Scholar

Windeisen, E., Strobel, C., Wegener, G. (2007) Chemical changes during the production of thermo-treated beech wood. Wood Sci. Technol. 41:523–536.10.1007/s00226-007-0146-5Search in Google Scholar

Yildiz, S., Gezer, E.D., Yildiz, U.C. (2006) Mechanical and chemical behavior of spruce wood modified by heat. Build Environ. 41:1762–1766.10.1016/j.buildenv.2005.07.017Search in Google Scholar

Zaman, A., Alén, R., Kotilainen, R. (2000) Thermal behaviour of Pinus sylvestris and Betula pendula at 200–230°C. Wood Fiber Sci. 32:138–143.Search in Google Scholar

Received: 2016-5-10
Accepted: 2016-11-29
Published Online: 2017-3-25
Published in Print: 2017-4-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 9.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hf-2016-0079/html
Scroll to top button