Startseite Approximation by bivariate (p,q)-Baskakov–Kantorovich operators
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Approximation by bivariate (p,q)-Baskakov–Kantorovich operators

  • Hatice Gul Ince Ilarslan und Tuncer Acar EMAIL logo
Veröffentlicht/Copyright: 9. November 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The present paper deals with the bivariate (p,q)-Baskakov–Kantorovich operators and their approximation properties. First we construct the operators and obtain some auxiliary results such as calculations of moments and central moments, etc. Our main results consist of uniform convergence of the operators via the Korovkin theorem and rate of convergence in terms of modulus of continuity.

MSC 2010: 41A25

References

[1] T. Acar, (p,q)-generalization of Szász–Mirakyan operators, Math. Methods Appl. Sci. 39 (2016), no. 10, 2685–2695. 10.1002/mma.3721Suche in Google Scholar

[2] T. Acar, A. Aral and S. A. Mohiuddine, Approximation by bivariate (p,q)-Bernstein–Kantorovich operators, Iran. J. Sci. Technol. Trans. A Sci. (2016), 10.1007/s40995-016-0045-4. 10.1007/s40995-016-0045-4Suche in Google Scholar

[3] T. Acar, A. Aral and S. A. Mohiuddine, On Kantorovich modification of (p,q)-Baskakov operators, J. Inequal. Appl. 2016 (2016), Article ID 98. 10.1186/s13660-016-1045-9Suche in Google Scholar

[4] I. Burban, Two-parameter deformation of the oscillator algebra and (p,q)-analog of two-dimensional conformal field theory, J. Nonlinear Math. Phys. 2 (1995), no. 3–4, 384–391. 10.2991/jnmp.1995.2.3-4.18Suche in Google Scholar

[5] I. M. Burban and A. U. Klimyk, P,Q-differentiation, P,Q-integration, and P,Q-hypergeometric functions related to quantum groups, Integral Transform. Spec. Funct. 2 (1994), no. 1, 15–36. 10.1080/10652469408819035Suche in Google Scholar

[6] P. L. Butzer and H. Berens, Semi-Groups of Operators and Approximation, Grundlehren Math. Wiss. 145, Springer, New York, 1967. 10.1007/978-3-642-46066-1Suche in Google Scholar

[7] M. Gurdek, L. Rempulska and M. Skorupka, The Baskakov operators for functions of two variables, Collect. Math. 50 (1999), no. 3, 289–302. Suche in Google Scholar

[8] M. N. Hounkonnou and J. D. B. Kyemba, R(p,q)-calculus: Differentiation and integration, SUT J. Math. 49 (2013), no. 2, 145–167. 10.55937/sut/1394548362Suche in Google Scholar

[9] R. Jagannathan and K. S. Rao, Two-parameter quantum algebras, twin-basic numbers, and associated generalized hypergeometric series, preprint (2006), https://arxiv.org/abs/math/0602613. Suche in Google Scholar

[10] M. Mursaleen, K. J. Ansari and A. Khan, On (p,q)-analogue of Bernstein operators, Appl. Math. Comput. 266 (2015), 874–882; erratum, Appl. Math. Comput. 278 (2016), 70–71. 10.1016/j.amc.2015.04.090Suche in Google Scholar

[11] M. Mursaleen, M. Nasiruzzaman, A. Khan and K. J. Ansari, Some approximation results on Bleimann–Butzer–Hahn operators defined by (p,q)-integers, Filomat 30 (2016), no. 3, 639–648. 10.2298/FIL1603639MSuche in Google Scholar

[12] V. Sahai and S. Yadav, Representations of two parameter quantum algebras and p,q-special functions, J. Math. Anal. Appl. 335 (2007), no. 1, 268–279. 10.1016/j.jmaa.2007.01.072Suche in Google Scholar

Received: 2016-05-10
Accepted: 2016-09-21
Published Online: 2016-11-09
Published in Print: 2018-09-01

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2016-0057/html
Button zum nach oben scrollen