Home Quasi-nilpotent perturbations of the generalized Kato spectrum
Article
Licensed
Unlicensed Requires Authentication

Quasi-nilpotent perturbations of the generalized Kato spectrum

  • Mohammed Benharrat EMAIL logo and Bekkai Messirdi
Published/Copyright: February 21, 2017
Become an author with De Gruyter Brill

Abstract

In this paper, we show that the generalized Kato spectrum of a bounded operator in a Banach space is invariant under perturbation by commuting quasi-nilpotent operators, and the Kato spectrum is stable under additive commuting nilpotent perturbations. Our results are used to give an equivalent definition of the generalized Kato spectrum.

MSC 2010: 47A10

References

[1] P. Aiena, Fredholm and Local Spectral Theory, with Applications to Multipliers, Kluwer Academic, Dordrecht, 2004. Search in Google Scholar

[2] C. Apostol, The reduced minimum modulus, Michigan Math. J. 32 (1985), no. 3, 279–294. 10.1307/mmj/1029003239Search in Google Scholar

[3] M. Benharrat and B. Messirdi, On the generalized Kato spectrum, Serdica Math. J. 37 (2011), no. 4, 283–294. Search in Google Scholar

[4] M. Benharrat and B. Messirdi, Essential spectrum: A brief survey of concepts and applications, Azerb. J. Math. 2 (2012), no. 1, 37–65. Search in Google Scholar

[5] M. Benharrat and B. Messirdi, Relationship between the Kato essential spectrum and a variant of essential spectrum, Gen. Math. Rev. 20 (2012), no. 4, 71–88. Search in Google Scholar

[6] S. Goldberg, Unbounded Linear Operators: Theory and Applications, McGraw-Hill, New York, 1966. Search in Google Scholar

[7] S. Grabiner, Ascent, descent and compact perturbations, Proc. Amer. Math. Soc. 71 (1978), no. 1, 79–80. 10.1090/S0002-9939-1978-0495841-7Search in Google Scholar

[8] Q. Jiang and H. Zhong, Generalized Kato decomposition, single-valued extension property and approximate point spectrum, J. Math. Anal. Appl. 356 (2009), no. 1, 322–327. 10.1016/j.jmaa.2009.03.017Search in Google Scholar

[9] Q. Jiang and H. Zhong, Components of generalized Kato resolvent set and single-valued extension property, Front. Math. China 7 (2012), no. 4, 695–702. 10.1007/s11464-012-0207-4Search in Google Scholar

[10] M. A. Kaashoek and D. C. Lay, Ascent, descent, and commuting perturbations, Trans. Amer. Math. Soc. 169 (1972), 35–47. 10.1090/S0002-9947-1972-0312299-8Search in Google Scholar

[11] T. Kato, Perturbation Theory for Linear Operators, Grundlehren Math. Wiss. 132, Springer, New York, 1966. 10.1007/978-3-662-12678-3Search in Google Scholar

[12] J. J. Koliha, A generalized Drazin inverse, Glasg. Math. J. 38 (1996), no. 3, 367–381. 10.1017/S0017089500031803Search in Google Scholar

[13] V. Kordula and V. Müller, The distance from the Apostol spectrum, Proc. Amer. Math. Soc. 124 (1996), no. 10, 3055–3061. 10.1090/S0002-9939-96-03306-0Search in Google Scholar

[14] J.-P. Labrousse, Les opérateurs quasi Fredholm: une généralisation des opérateurs semi Fredholm, Rend. Circ. Mat. Palermo (2) 29 (1980), no. 2, 161–258. 10.1007/BF02849344Search in Google Scholar

[15] M. Mbekhta, Généralisation de la décomposition de Kato aux opérateurs paranormaux et spectraux, Glasg. Math. J. 29 (1987), no. 2, 159–175. 10.1017/S0017089500006807Search in Google Scholar

[16] V. Müller, On the regular spectrum, J. Operator Theory 31 (1994), no. 2, 363–380. Search in Google Scholar

[17] V. Müller, Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras, 2nd ed., Oper. Theory Adv. Appl. 139, Birkhäuser, Basel, 2007. Search in Google Scholar

[18] V. Rakočević, Generalized spectrum and commuting compact perturbations, Proc. Edinb. Math. Soc. (2) 36 (1993), no. 2, 197–209. 10.1017/S0013091500018332Search in Google Scholar

Received: 2014-11-15
Accepted: 2015-11-04
Published Online: 2017-02-21
Published in Print: 2018-09-01

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 7.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/gmj-2017-0007/html
Scroll to top button