Home Absolute convergence of multiple Fourier series of a function of p(n)-Λ-BV
Article
Licensed
Unlicensed Requires Authentication

Absolute convergence of multiple Fourier series of a function of p(n)-Λ-BV

  • Rajendra G. Vyas EMAIL logo
Published/Copyright: April 4, 2017
Become an author with De Gruyter Brill

Abstract

In this paper, we obtain sufficiency conditions for generalized β-absolute convergence (0<β2) of single and multiple Fourier series of functions of the class Λ-BV(p(n),φ,[-π,π]) and the class (Λ1,Λ2,,ΛN)-BV(p(n),φ,[-π,π]N), respectively.

References

[1] L. Gogoladze and R. Meskhia, On the absolute convergence of trigonometric Fourier series, Proc. A. Razmadze Math. Inst. 141 (2006), 29–40. Search in Google Scholar

[2] S. Minakshisundaram and O. Szász, On absolute convergence of multiple Fourier series, Trans. Amer. Math. Soc. 61 (1947), 36–53. 10.1090/S0002-9947-1947-0019148-1Search in Google Scholar

[3] F. Móricz and A. Veres, Absolute convergence of multiple Fourier series revisited, Anal. Math. 34 (2008), no. 2, 145–162. 10.1007/s10476-008-0205-7Search in Google Scholar

[4] P. L. Ul’janov, Series with respect to a Haar system with monotone coefficients (in Russian), Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 925–950. Search in Google Scholar

[5] R. G. Vyas, A note on functions of p(n)-Λ-bounded variation, J. Indian Math. Soc. (N.S.) 78 (2011), no. 1–4, 215–220. Search in Google Scholar

[6] R. G. Vyas, Small gaps Fourier series and generalized variations, Adv. Pure Appl. Math. 3 (2012), no. 2, 223–230. 10.1515/apam-2012-0002Search in Google Scholar

[7] R. G. Vyas, On multiple Fourier coefficients of a function of the generalized Wiener class, Georgian Math. J. 22 (2015), no. 3, 435–439. 10.1515/gmj-2015-0011Search in Google Scholar

[8] R. G. Vyas and K. N. Darji, On absolute convergence of multiple Fourier series, Math. Notes 94 (2013), no. 1–2, 71–81; translation of Mat. Zametki 94 (2013), no. 1, 81–93. 10.1134/S0001434613070079Search in Google Scholar

Received: 2014-11-29
Accepted: 2015-11-03
Published Online: 2017-04-04
Published in Print: 2018-09-01

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/gmj-2017-0008/html
Scroll to top button