Startseite An analysis of leaky hybrid modes depending on structural parameters in a circular dielectric rod
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

An analysis of leaky hybrid modes depending on structural parameters in a circular dielectric rod

  • Ersoy Kelebekler ORCID logo EMAIL logo
Veröffentlicht/Copyright: 19. April 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Open dielectric waveguides are structures used to guide electromagnetic energy in integrated circuits above the cutoff or as leaky wave antennas propagating the energy transversely out of the waveguide in a narrow region below the cutoff. In this study, the related operating regions for the hybrid EH modes of a cylindrical dielectric rod were obtained analytically. Analyses of the leaky wave characteristics of the hybrid EH modes for various radii of the rod and various dielectric constant values were performed. The guided modes existing above the cutoff with a pure real propagation constant, and the leaky wave modes existing below the cutoff with a complex propagation constant, were obtained from the coefficient matrix of the characteristic equations system of the structure using the bisection method and Davidenko’s method, respectively. Additionally, the guided modes of the structure were obtained and designated in the light of previous studies in the literature. The results show that the frequency spectrum of the antenna mode region increases as the value of the dielectric constant and the radius of the dielectric rod decrease. In addition, a circular dielectric with a smaller radius and dielectric constant had a larger frequency spectrum in the leaky wave antenna applications.


Corresponding author: Ersoy Kelebekler, Electricity and Energy Department, Kocaeli University, Uzunçiftlik Nuh Çimento MYO, 41180, Kocaeli, Turkey, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] P. J. B. Clarricoats and K. B. Chan, “Propagation behaviour of cylindrical-dielectric-rod waveguides,” Proc. Inst. Electr. Eng., vol. 120, no. 11, pp. 1371–1378, 1973. https://doi.org/10.1049/piee.1973.0275.Suche in Google Scholar

[2] A. W. Snyder, “Leaky-ray theory of optical waveguides of circular cross section,” Appl. Phys., vol. 4, no. 4, pp. 273–298, 1974. https://doi.org/10.1007/bf00928381.Suche in Google Scholar

[3] G. Biernson and D. J. Kinsley, “Generalized plots of mode patterns in a cylindrical dielectric waveguide applied to retinal cones,” IEEE Trans. Microw. Theor. Tech., vol. 13, no. 3, pp. 354–356, 1965. https://doi.org/10.1109/tmtt.1965.1125999.Suche in Google Scholar

[4] C. Yeh, “Guided-wave modes in cylindrical optical fibers,” IEEE Trans. Educ., vol. E-30, no. 1, pp. 43–51, 1987. https://doi.org/10.1109/te.1987.5570585.Suche in Google Scholar

[5] E. Snitzer, “Cylindrical dielectric waveguide modes,” J. Opt. Soc. Am., vol. 51, no. 5, pp. 491–498, 1961. https://doi.org/10.1364/josa.51.000491.Suche in Google Scholar

[6] S. S. Yi, “Observation of the scattered TE- and TM-mode coupling in active dielectric cylinder,” Opt. Commun., vol. 173, nos 1–6, pp. 211–215, 2000. https://doi.org/10.1016/s0030-4018(99)00622-7.Suche in Google Scholar

[7] S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Highly efficient full-vectorial integral equation solution for the bound, leaky, and complex modes of dielectric waveguides,” IEEE J. Sel. Top. Quant. Electron., vol. 8, no. 6, pp. 1225–1232, 2002. https://doi.org/10.1109/jstqe.2002.806729.Suche in Google Scholar

[8] Y. Mitelman, “New mathematical model for analysis of open circular dielectric waveguides,” in Proc. – 2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology USBEREIT, 2018, Yekaterinburg, 2018, pp. 342–347.10.1109/USBEREIT.2018.8384619Suche in Google Scholar

[9] S. Keyrouz and D. Caratelli, “Dielectric resonator antennas: basic concepts, design guidelines, and recent developments at millimeter-wave frequencies,” Int. J. Antenn. Propag., vol. 2016, pp. 1–20, 2016. https://doi.org/10.1155/2016/6075680.Suche in Google Scholar

[10] R. D. Darawade, A. S. Kothari, S. V. Edhate, V. R. Kaushik, and P. C. More, “A review on dielectric resonator antenna and its analysis setup,” Int. J. Sci. Res. Sci. Eng. Technol., vol. 4, no. 7, pp. 282–289, 2018.Suche in Google Scholar

[11] S. Biswas and D. Guha, “Stop-band characterization of an isolated DGS for reducing mutual coupling between adjacent antenna elements and experimental verification for dielectric resonator antenna array,” AEU – Int. J. Electron. Commun., vol. 67, no. 4, pp. 319–322, 2013. https://doi.org/10.1016/j.aeue.2012.09.004.Suche in Google Scholar

[12] D. Guha, P. Gupta, and C. Kumar, “Dualband cylindrical dielectric resonator antenna employing HEM11δ and HEM12δ modes excited by new composite aperture,” IEEE Trans. Antenn. Propag., vol. 63, no. 1, pp. 433–438, 2015. https://doi.org/10.1109/tap.2014.2368116.Suche in Google Scholar

[13] S. Pahadsingh and S. Sahu, “Planar UWB integrated with multi narrowband cylindrical dielectric resonator antenna for cognitive radio application,” AEU – Int. J. Electron. Commun., vol. 74, pp. 150–157, 2017. https://doi.org/10.1016/j.aeue.2017.02.010.Suche in Google Scholar

[14] N. K. Mishra, S. Das, and D. K. Vishwakarma, “Beam steered linear array of cylindrical dielectric resonator antenna,” AEU – Int. J. Electron. Commun., vol. 98, pp. 106–113, 2019. https://doi.org/10.1016/j.aeue.2018.11.011.Suche in Google Scholar

[15] G. Das, N. K. Sahu, and R. K. Gangwar, “Dielectric resonator based multiport antenna system with multi-diversity and built-in decoupling mechanism,” AEU – Int. J. Electron. Commun., vol. 119, 2020, Art no. 153193. https://doi.org/10.1016/j.aeue.2020.153193.Suche in Google Scholar

[16] R. Chowdhury, N. Mishra, M. M. Sani, and R. K. Chaudhary, “Analysis of a wideband circularly polarized cylindrical dielectric resonator antenna with broadside radiation coupled with simple microstrip feeding,” IEEE Access, vol. 5, pp. 19478–19485, 2017. https://doi.org/10.1109/access.2017.2752210.Suche in Google Scholar

[17] N. Yang, K. W. Leung, and N. Wu, “Pattern-diversity cylindrical dielectric resonator antenna using fundamental modes of different mode families,” IEEE Trans. Antenn. Propag., vol. 67, no. 11, pp. 6778–6788, 2019. https://doi.org/10.1109/tap.2019.2922873.Suche in Google Scholar

[18] X. Y. Zeng, S. J. Xu, K. Wu, and K. M. Luk, “Properties of guided modes on open structures near the cutoff region using a new version of complex effective dielectric constant,” IEEE Trans. Microw. Theor. Tech., vol. 50, no. 5, pp. 1417–1424, 2002.10.1109/22.999157Suche in Google Scholar

[19] A. A. Oliner and K. S. Lee, “The nature of the leakage from higher modes on microstrip line,” in IEEE MTT-S International Microwave Symposium Digest, Baltimore, 1986, pp. 57–60.10.1109/MWSYM.1986.1132108Suche in Google Scholar

[20] F. Mesa, D. R. Jackson, and M. J. Freire, “Evolution of leaky modes on printed-circuit lines,” IEEE Trans. Microw. Theor. Tech., vol. 50, no. 1 I, pp. 94–104, 2002. https://doi.org/10.1109/22.981253.Suche in Google Scholar

[21] F. Mesa and D. R. Jackson, “Investigation of integration paths in the spectral-domain analysis of leaky modes on printed circuit lines,” IEEE Trans. Microw. Theor. Tech., vol. 50, no. 10, pp. 2267–2275, 2002. https://doi.org/10.1109/tmtt.2002.803433.Suche in Google Scholar

[22] K. Y. Kim, H.-S. Tae, and J.-H. Lee, “Analysis of leaky modes in circular dielectric rod waveguides,” Electron. Lett., vol. 39, no. 1, pp. 61–62, 2003.10.1049/el:20030111Suche in Google Scholar

[23] K. Y. Kim, Guided and Leaky Modes of Circular Open Electromagnetic Waveguides: Dielectric, Plasma, and Metamaterial Columns, Daegu, Republic of Korea, Kyungpook National University, 2004.Suche in Google Scholar

[24] K. Y. Kim, H. Tae, and J.-H. Lee, “Leaky dispersion characteristics in circular dielectric rod using Davidenko’s method,” J. Electromagn. Eng. Sci., vol. 5, no. 2, pp. 72–79, 2005.Suche in Google Scholar

[25] S. Yang and J. Song, “Analysis of guided and leaky TM0n and TE0n modes in circular dielectric waveguide,” Prog. Electromagn. Res. B, vol. 66, no. 1, pp. 143–156, 2016. https://doi.org/10.2528/pierb15120802.Suche in Google Scholar

[26] R. R. Hirani, S. K. Pathak, S. N. Shah, and D. K. Sharma, “Dispersion characteristics of dielectric tube waveguide loaded with plasma for leaky wave antenna application,” AEU – Int. J. Electron. Commun., vol. 83, pp. 123–130, 2018. https://doi.org/10.1016/j.aeue.2017.08.019.Suche in Google Scholar

[27] K. A. Michalski and D. Zheng, “Rigorous analysis of open microstrip lines of arbitrary cross-section in bound and leaky regimes,” IEEE Trans. Microw. Theor. Tech., vol. 37, no. 12, pp. 2005–2010, 1989. https://doi.org/10.1109/22.44116.Suche in Google Scholar

[28] P. Lampariello, F. Frezza, and A. A. Oliner, “The transition region between bound-wave and leaky-wave ranges for a partially dielectric-loaded open guiding structure,” IEEE Trans. Microw. Theor. Tech., vol. 38, no. 12, pp. 1831–1836, 1990. https://doi.org/10.1109/22.64563.Suche in Google Scholar

[29] J. S. Bagby, C. H. Lee, D. P. Nyquist, and Y. Yuan, “Identification of propagation regimes on integrated microstrip transmission lines,” IEEE Trans. Microw. Theor. Tech., vol. 41, no. 11, pp. 1887–1894, 1993. https://doi.org/10.1109/22.273413.Suche in Google Scholar

[30] C. Di Nallo, F. Frezza, A. Galli, P. Lampariello, and A. A. Oliner, “Properties of NRD-guide and H-guide higher-order modes: physical and nonphysical ranges,” IEEE Trans. Microw. Theor. Tech., vol. 42, no. 12, pp. 2429–2434, 1994. https://doi.org/10.1109/22.339777.Suche in Google Scholar

[31] Y.-D. Lin, J. wen Sheen, and C. C. Tzuang, “Analysis and design of feeding structures for microstrip leaky wave antenna,” IEEE Trans. Microw. Theor. Tech., vol. 44, no. 9, pp. 1540–1547, 1996.10.1109/22.536602Suche in Google Scholar

[32] Y. De Lin and J. W. Sheen, “Mode distinction and radiation-efficiency analysis of planar leaky-wave line source,” IEEE Trans. Microw. Theor. Tech., vol. 45, no. 10 PART 1, pp. 1672–1680, 1997.10.1109/22.641710Suche in Google Scholar

[33] C. Luxey and J.-M. Laheurte, “Simple design of dual-beam leaky-wave antennas in microstrips,” IEE Proc. Microw. Antenn. Propag., vol. 144, no. 6, pp. 397–402, 1997. https://doi.org/10.1049/ip-map:19971407.10.1049/ip-map:19971407Suche in Google Scholar

[34] F. Frezza, P. Lampariello, H. Shigesawa, M. Tsuji, and A. A. Oliner, “A versatile leakywave antenna based on stubloaded rectangular waveguide: part II effects of flanges and finite stub length,” IEEE Trans. Antenn. Propag., vol. 46, no. 7, pp. 1042–1046, 1998. https://doi.org/10.1109/8.704807.Suche in Google Scholar

[35] A. A. Oliner, “Leakage from higher modes on microstrip line with application to antennas,” Radio Sci., vol. 22, no. 6, pp. 907–912, 1987. https://doi.org/10.1029/rs022i006p00907.Suche in Google Scholar

[36] C. A. Balanis, Advanced Engineering Electromagnetics, New Jersey, Wiley, 1989.Suche in Google Scholar

[37] H. Talisa, “Application of Davidenko’s method to the solution of dispersion relations in lossy waveguiding systems,” IEEE Trans. Microw. Theor. Tech., vol. MTT-33, no. 10, pp. 967–971, 1985. https://doi.org/10.1109/tmtt.1985.1133157.Suche in Google Scholar

[38] K. Naishadham and Hui-Wen Yao, “An efficient computation of transient scattering by a perfectly conducting cylinder,” IEEE Trans. Antenn. Propag., vol. 41, no. 11, pp. 1509–1515, 1993. https://doi.org/10.1109/8.267350.Suche in Google Scholar

[39] M. M. Shabat, Y. S. Madi, and D. Jäger, “Solution of lossy dielectric moving waveguides using numerical method (Davidenko’s approach),” Electromagnetics, vol. 22, no. 8, pp. 659–666, 2002. https://doi.org/10.1080/02726340290084184.Suche in Google Scholar

[40] M. M. Shabat, D. Jager, N. M. Barakat, G. Strip, and P. Authority, “Numerical and analytical solutions of dispersion equation in lossy nonlinear waveguiding system,” Microw. Opt. Technol. Lett., vol. 22, no. 4, pp. 273–278, 1999. https://doi.org/10.1002/(sici)1098-2760(19990820)22:4<273::aid-mop18>3.0.co;2-2.10.1002/(SICI)1098-2760(19990820)22:4<273::AID-MOP18>3.0.CO;2-2Suche in Google Scholar

[41] K. Naishadham and L. B. Felsen, “Dispersion of waves guided along a cylindrical substrate-superstrate layered medium,” IEEE Trans. Antenn. Propag., vol. 41, no. 3, pp. 304–313, 1993. https://doi.org/10.1109/8.233133.Suche in Google Scholar

[42] H. A. N. Hejase, “On the use of Davidenko’s method in complex root search,” IEEE Trans. Microw. Theor. Tech., vol. 41, no. 1, pp. 141–143, 1993. https://doi.org/10.1109/22.210241.Suche in Google Scholar

[43] K. Y. Kim, J. H. Lee, H. S. Tae, “Leaky mode characteristics of plasma column waveguides,” in IEEE Antennas and Propagation Society International Symposium, Washington, 2005, pp. 700–703.Suche in Google Scholar

[44] E. Snitzer, “Cylindrical Dielectric Waveguide Modes,” J. Opt. Soc. Am., vol. 51, no. 5, pp. 491–498, 1961.10.1364/JOSA.51.000491Suche in Google Scholar

[45] W. M. Bruno and W. B. Bridges, “Flexible dielectric waveguides with powder cores,” IEEE Trans. Microw. Theor. Tech., vol. 36, no. 5, pp. 882–890, 1988. https://doi.org/10.1109/22.3608.Suche in Google Scholar

[46] M. J. Lahart, “Analysis of a cylindrical dielectric waveguide with three regions by use of an invariant mode-definition parameter,” J. Opt. Soc. Am. A, vol. 15, no. 3, p. 727, 1998. https://doi.org/10.1364/josaa.15.000727.Suche in Google Scholar

[47] A. Kapoor and G. S. Singh, “Mode classification in cylindrical dielectric waveguides,” J. Lightwave Technol., vol. 18, no. 6, pp. 849–852, 2000. https://doi.org/10.1109/50.848397.Suche in Google Scholar

[48] P. J. B. Clarricoats, “Propagation along unbounded and bounded dielectric rods. Part 1: propagation along an unbounded dielectric rod,” Proc. IEE Part C Monogr. Part C Monogr., vol. 108, no. 13, p. 170, 1961. https://doi.org/10.1049/pi-c.1961.0025.Suche in Google Scholar

[49] A. Safaai-Jaz and G. L. Yip, “Classification of hybrid modes in cylindrical dielectric optical waveguides,” Radio Sci., vol. 12, no. 4, pp. 603–609, 1977.10.1029/RS012i004p00603Suche in Google Scholar

[50] K. Morishita, “Hybrid modes in circular cylindrical optical fibers,” IEEE Trans. Microw. Theor. Tech., vol. 31, no. 4, pp. 344–350, 1983. https://doi.org/10.1109/tmtt.1983.1131495.Suche in Google Scholar

Received: 2020-11-02
Accepted: 2021-03-09
Published Online: 2021-04-19
Published in Print: 2021-10-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 31.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/freq-2020-0189/html
Button zum nach oben scrollen