Home A single-layer low-cost reflectarray antenna using dual-resonant element approach
Article
Licensed
Unlicensed Requires Authentication

A single-layer low-cost reflectarray antenna using dual-resonant element approach

  • Ting Liu , Lin Zhang EMAIL logo , Jialiang Wu , Jing Zhao and Zhiguo Zeng
Published/Copyright: June 14, 2021
Become an author with De Gruyter Brill

Abstract

A single-layer wideband high efficiency reflectarray in Ku-band has been presented in this paper. A novel dual-resonant patch element approach has been analyzed and optimized to obtain good radiation performances within the operating frequency band. The phase shift range of 573° can be obtained with less steep linear phase shift curve. To compensate the differential spatial phase delays from the feed to the elements, the variable size technique has been utilized for obtaining required phase shifts. The reflectarray aperture has been designed, manufactured and measured. Measured results are in good agreement with the simulated ones. The measured gain of the reflectarray aperture at center frequency can reach 27.2 dBi, which is equivalent to aperture efficiency of 51.3%, and the 1-dB gain bandwidth of the aperture is 18.4%.


Corresponding author: Lin Zhang, Air and Missile Defense College, Air Force Engineering University, Xi’an, Shaanxi, China, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] S. Xua and F. Yanga, Reflectarray Antennas, Beijing, China, Tsinghua University, 2015.Search in Google Scholar

[2] J. Huang and J. A. Encinar, “Reflectarray antennas,” in Institute of Electrical and Electronics Engineers, Hoboken, NJ, Wiley, 2008.10.1002/9780470178775Search in Google Scholar

[3] J. Shaker, M. R. Chaharmir, and J. Ethier, Reflectarray Antennas: Analysis, Design, Fabrication and Measurement, Norwood, MA, USA, Artech House, 2014.Search in Google Scholar

[4] D. M. Pozar, “Bandwidth of reflectarrays,” Electron. Lett., vol. 39, no. 21, pp. 1490–1491, 2003, https://doi.org/10.1049/el:20030990.10.1049/el:20030990Search in Google Scholar

[5] Eduardo. Carrasco, J. A. Encinar, and M. Barba, “Bandwidth improvement in large reflectarrays by using true-time delay,” IEEE Trans. Antenn. Propag., vol. 56, no. 8, pp. 2496–2503, 2008, https://doi.org/10.1109/tap.2008.927559.Search in Google Scholar

[6] A. Yu, Y. Fan, A. Z. Elsherbeni, et al.., “An offset-fed X-band reflectarray antenna using a modified element rotation technique,” IEEE Trans. Antenn. Propag., vol. 60, no. 3, pp. 1619–1624, 2012. https://doi.org/10.1109/tap.2011.2180299.Search in Google Scholar

[7] G. Zhao, Y-C. Jiao, F. Zhang, et al.., “A subwavelength element for broadband circularly polarized reflectarrays,” IEEE Antenn. Wireless Propag. Lett., vol. 9, pp. 330–333, 2010, https://doi.org/10.1109/lawp.2010.2047836.Search in Google Scholar

[8] L. Guo and P. K. Tan, “On the use of single-layered sub-wavelength rectangular patch elements for broadband folded reflectarrays,” IEEE Antenn. Wireless Propag. Lett., vol. 16, pp. 424–427, 2017. https://doi.org/10.1109/LAWP.2016.2582201.Search in Google Scholar

[9] M. M. Tahseen and A. A. Kishk, “Ka-band circularly polarized high efficiency wide band reflectarray using cross bowtie elements,” Progr. Electromagn. Res., vol. 153, pp. 1–10, 2015, https://doi.org/10.2528/pier15072305.Search in Google Scholar

[10] A-H. Mahmoud and A. A. Kishk, “Ka-band low profile circularly polarized reflectarray,” Progr. Electromagn. Res. C, vol. 63, pp. 43–51, 2016, https://doi.org/10.2528/pierc16020501.Search in Google Scholar

[11] F. Ahmadi, A. Namiranian, and B. Virdee, “Design and implementation of a single layer circularly polarized reflectarray antenna with linearly polarized feed,” Electromagnetics, vol. 35, no. 2, pp. 93–100, 2015, https://doi.org/10.1080/02726343.2014.987637.Search in Google Scholar

[12] J. A. Encinar and J. A. Zornoza, “Broadband design of three-layer printed reflectarrays,” IEEE Trans. Antenn. Propag., vol. 51, no. 7, pp. 1662–1664, 2003, https://doi.org/10.1109/tap.2003.813611.Search in Google Scholar

[13] P. Nayeri, Y. Fan, and A. Z. Elsherbeni, “Broadband reflectarray antennas using double-layer subwavelength patch elements,” IEEE Antenn. Wireless Propag. Lett., vol. 9, pp. 1139–1142, 2010, https://doi.org/10.1109/lawp.2010.2094178.Search in Google Scholar

[14] L. S. Ren, Y. C. Jiao, F. Li, J. J. Zhao, and G. Zhao, “A dual-layer T-shaped element for broadband circularly polarized reflectarray with linearly polarized feed,” IEEE Antenn. Wireless Propag. Lett., vol. 10, pp. 407–410, 2011, https://doi.org/10.1109/lawp.2011.2148090.Search in Google Scholar

[15] M. R. Chaharmir, J. Shaker, M. Cuhaci, and A. Ittipiboon, “Broadband reflectarray antenna with double cross loops,” Electron. Lett., vol. 42, pp. 65–66, 2006, https://doi.org/10.1049/el:20063299.10.1049/el:20063299Search in Google Scholar

[16] M. R. Chaharmir and J. Shaker, “Broadband reflectarray with combination of cross and rectangle loop elements,” Electron. Lett., vol. 44, no. 11, pp. 658–659, 2008, https://doi.org/10.1049/el:20080910.10.1049/el:20080910Search in Google Scholar

[17] L. Moustafa, R. Gillard, F. Peris, R. Loison, H. Legay, and E. Girard, “The phoenix cell: a new reflectarray cell with large bandwidth and rebirth capabilities,” IEEE Antenn. Wireless Propag. Lett., vol. 10, pp. 71–74, 2011, https://doi.org/10.1109/lawp.2011.2108633.Search in Google Scholar

[18] M. Mohammadirad, N. Komjani, M. R. Chaharmir, J. Shaker, and A. R. Sebak, “Impact of feed position on the operating band of broadband reflectarray antenna,” IEEE Antenn. Wireless Propag. Lett., vol. 11, pp. 1104–1107, 2012, https://doi.org/10.1109/lawp.2012.2218563.Search in Google Scholar

[19] M. N. Jazi, M. R. Chaharmir, J. Shaker, and A. R. Sebak, “Reflectarray antennas using single layer polarization independent multi-resonant unit cells,” in International Symposium on Antenna Technology and Applied Electromagnetics and the Canadian, Radio Science Meeting, 2014.Search in Google Scholar

[20] M. N. Azi, M. R. Chaharmir, J. Shaker, and A. R. Sebak, “On radiation performances of reflectarray antennas constructed with subwavelength unit cells,” IEEE Antenn. Wireless Propag. Lett., vol. 14, pp. 1258–1262, 2015, https://doi.org/10.1109/lawp.2015.2401335.Search in Google Scholar

[21] J. A. Encinar, “Design of two-layer printed reflectarrays using patches of variable size,” Antenn. Propag. IEEE Trans., vol. 49, no. 10, pp. 1403–1410, 2001, https://doi.org/10.1109/8.954929.Search in Google Scholar

[22] P. Nayeri, F. Yang, and A. Z. Elsherbeni, “Broadband reflectarray antennas using double-layer subwavelength patch elements,” IEEE Antenn. Wireless Propag. Lett., vol. 9, no. 1, pp. 1139–1142, 2010, https://doi.org/10.1109/lawp.2010.2094178.Search in Google Scholar

[23] M. Min and L. Guo, “Design of a wideband single-layer reflectarray antenna using slotted rectangular patch with concave arms,” IEEE Access, vol. 7, pp. 176197–176203, 2019, https://doi.org/10.1109/access.2019.2957840.Search in Google Scholar

[24] R. Deng, S. Xu, F. Yang, et al.., “A single-layer high-efficiency wideband reflectarray using hybrid design approach,” IEEE Antenn. Wireless Propag. Lett., vol. 16, pp. 884–887, 2016. https://doi.org/10.1109/LAWP.2016.2613882.Search in Google Scholar

[25] P. Y. Qin, Y. J. Guo, and A. R. Weily, “Broadband reflectarray antenna using subwavelength elements based on double square meander-line rings,” IEEE Trans. Antenn. Propag., vol. 64, no. 1, pp. 378–383, 2015.10.1109/TAP.2015.2502978Search in Google Scholar

Received: 2020-11-14
Accepted: 2021-05-31
Published Online: 2021-06-14
Published in Print: 2021-10-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/freq-2020-0200/html
Scroll to top button