Home An analysis of leaky hybrid modes depending on structural parameters in a circular dielectric rod
Article
Licensed
Unlicensed Requires Authentication

An analysis of leaky hybrid modes depending on structural parameters in a circular dielectric rod

  • Ersoy Kelebekler ORCID logo EMAIL logo
Published/Copyright: April 19, 2021
Become an author with De Gruyter Brill

Abstract

Open dielectric waveguides are structures used to guide electromagnetic energy in integrated circuits above the cutoff or as leaky wave antennas propagating the energy transversely out of the waveguide in a narrow region below the cutoff. In this study, the related operating regions for the hybrid EH modes of a cylindrical dielectric rod were obtained analytically. Analyses of the leaky wave characteristics of the hybrid EH modes for various radii of the rod and various dielectric constant values were performed. The guided modes existing above the cutoff with a pure real propagation constant, and the leaky wave modes existing below the cutoff with a complex propagation constant, were obtained from the coefficient matrix of the characteristic equations system of the structure using the bisection method and Davidenko’s method, respectively. Additionally, the guided modes of the structure were obtained and designated in the light of previous studies in the literature. The results show that the frequency spectrum of the antenna mode region increases as the value of the dielectric constant and the radius of the dielectric rod decrease. In addition, a circular dielectric with a smaller radius and dielectric constant had a larger frequency spectrum in the leaky wave antenna applications.


Corresponding author: Ersoy Kelebekler, Electricity and Energy Department, Kocaeli University, Uzunçiftlik Nuh Çimento MYO, 41180, Kocaeli, Turkey, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] P. J. B. Clarricoats and K. B. Chan, “Propagation behaviour of cylindrical-dielectric-rod waveguides,” Proc. Inst. Electr. Eng., vol. 120, no. 11, pp. 1371–1378, 1973. https://doi.org/10.1049/piee.1973.0275.Search in Google Scholar

[2] A. W. Snyder, “Leaky-ray theory of optical waveguides of circular cross section,” Appl. Phys., vol. 4, no. 4, pp. 273–298, 1974. https://doi.org/10.1007/bf00928381.Search in Google Scholar

[3] G. Biernson and D. J. Kinsley, “Generalized plots of mode patterns in a cylindrical dielectric waveguide applied to retinal cones,” IEEE Trans. Microw. Theor. Tech., vol. 13, no. 3, pp. 354–356, 1965. https://doi.org/10.1109/tmtt.1965.1125999.Search in Google Scholar

[4] C. Yeh, “Guided-wave modes in cylindrical optical fibers,” IEEE Trans. Educ., vol. E-30, no. 1, pp. 43–51, 1987. https://doi.org/10.1109/te.1987.5570585.Search in Google Scholar

[5] E. Snitzer, “Cylindrical dielectric waveguide modes,” J. Opt. Soc. Am., vol. 51, no. 5, pp. 491–498, 1961. https://doi.org/10.1364/josa.51.000491.Search in Google Scholar

[6] S. S. Yi, “Observation of the scattered TE- and TM-mode coupling in active dielectric cylinder,” Opt. Commun., vol. 173, nos 1–6, pp. 211–215, 2000. https://doi.org/10.1016/s0030-4018(99)00622-7.Search in Google Scholar

[7] S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Highly efficient full-vectorial integral equation solution for the bound, leaky, and complex modes of dielectric waveguides,” IEEE J. Sel. Top. Quant. Electron., vol. 8, no. 6, pp. 1225–1232, 2002. https://doi.org/10.1109/jstqe.2002.806729.Search in Google Scholar

[8] Y. Mitelman, “New mathematical model for analysis of open circular dielectric waveguides,” in Proc. – 2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology USBEREIT, 2018, Yekaterinburg, 2018, pp. 342–347.10.1109/USBEREIT.2018.8384619Search in Google Scholar

[9] S. Keyrouz and D. Caratelli, “Dielectric resonator antennas: basic concepts, design guidelines, and recent developments at millimeter-wave frequencies,” Int. J. Antenn. Propag., vol. 2016, pp. 1–20, 2016. https://doi.org/10.1155/2016/6075680.Search in Google Scholar

[10] R. D. Darawade, A. S. Kothari, S. V. Edhate, V. R. Kaushik, and P. C. More, “A review on dielectric resonator antenna and its analysis setup,” Int. J. Sci. Res. Sci. Eng. Technol., vol. 4, no. 7, pp. 282–289, 2018.Search in Google Scholar

[11] S. Biswas and D. Guha, “Stop-band characterization of an isolated DGS for reducing mutual coupling between adjacent antenna elements and experimental verification for dielectric resonator antenna array,” AEU – Int. J. Electron. Commun., vol. 67, no. 4, pp. 319–322, 2013. https://doi.org/10.1016/j.aeue.2012.09.004.Search in Google Scholar

[12] D. Guha, P. Gupta, and C. Kumar, “Dualband cylindrical dielectric resonator antenna employing HEM11δ and HEM12δ modes excited by new composite aperture,” IEEE Trans. Antenn. Propag., vol. 63, no. 1, pp. 433–438, 2015. https://doi.org/10.1109/tap.2014.2368116.Search in Google Scholar

[13] S. Pahadsingh and S. Sahu, “Planar UWB integrated with multi narrowband cylindrical dielectric resonator antenna for cognitive radio application,” AEU – Int. J. Electron. Commun., vol. 74, pp. 150–157, 2017. https://doi.org/10.1016/j.aeue.2017.02.010.Search in Google Scholar

[14] N. K. Mishra, S. Das, and D. K. Vishwakarma, “Beam steered linear array of cylindrical dielectric resonator antenna,” AEU – Int. J. Electron. Commun., vol. 98, pp. 106–113, 2019. https://doi.org/10.1016/j.aeue.2018.11.011.Search in Google Scholar

[15] G. Das, N. K. Sahu, and R. K. Gangwar, “Dielectric resonator based multiport antenna system with multi-diversity and built-in decoupling mechanism,” AEU – Int. J. Electron. Commun., vol. 119, 2020, Art no. 153193. https://doi.org/10.1016/j.aeue.2020.153193.Search in Google Scholar

[16] R. Chowdhury, N. Mishra, M. M. Sani, and R. K. Chaudhary, “Analysis of a wideband circularly polarized cylindrical dielectric resonator antenna with broadside radiation coupled with simple microstrip feeding,” IEEE Access, vol. 5, pp. 19478–19485, 2017. https://doi.org/10.1109/access.2017.2752210.Search in Google Scholar

[17] N. Yang, K. W. Leung, and N. Wu, “Pattern-diversity cylindrical dielectric resonator antenna using fundamental modes of different mode families,” IEEE Trans. Antenn. Propag., vol. 67, no. 11, pp. 6778–6788, 2019. https://doi.org/10.1109/tap.2019.2922873.Search in Google Scholar

[18] X. Y. Zeng, S. J. Xu, K. Wu, and K. M. Luk, “Properties of guided modes on open structures near the cutoff region using a new version of complex effective dielectric constant,” IEEE Trans. Microw. Theor. Tech., vol. 50, no. 5, pp. 1417–1424, 2002.10.1109/22.999157Search in Google Scholar

[19] A. A. Oliner and K. S. Lee, “The nature of the leakage from higher modes on microstrip line,” in IEEE MTT-S International Microwave Symposium Digest, Baltimore, 1986, pp. 57–60.10.1109/MWSYM.1986.1132108Search in Google Scholar

[20] F. Mesa, D. R. Jackson, and M. J. Freire, “Evolution of leaky modes on printed-circuit lines,” IEEE Trans. Microw. Theor. Tech., vol. 50, no. 1 I, pp. 94–104, 2002. https://doi.org/10.1109/22.981253.Search in Google Scholar

[21] F. Mesa and D. R. Jackson, “Investigation of integration paths in the spectral-domain analysis of leaky modes on printed circuit lines,” IEEE Trans. Microw. Theor. Tech., vol. 50, no. 10, pp. 2267–2275, 2002. https://doi.org/10.1109/tmtt.2002.803433.Search in Google Scholar

[22] K. Y. Kim, H.-S. Tae, and J.-H. Lee, “Analysis of leaky modes in circular dielectric rod waveguides,” Electron. Lett., vol. 39, no. 1, pp. 61–62, 2003.10.1049/el:20030111Search in Google Scholar

[23] K. Y. Kim, Guided and Leaky Modes of Circular Open Electromagnetic Waveguides: Dielectric, Plasma, and Metamaterial Columns, Daegu, Republic of Korea, Kyungpook National University, 2004.Search in Google Scholar

[24] K. Y. Kim, H. Tae, and J.-H. Lee, “Leaky dispersion characteristics in circular dielectric rod using Davidenko’s method,” J. Electromagn. Eng. Sci., vol. 5, no. 2, pp. 72–79, 2005.Search in Google Scholar

[25] S. Yang and J. Song, “Analysis of guided and leaky TM0n and TE0n modes in circular dielectric waveguide,” Prog. Electromagn. Res. B, vol. 66, no. 1, pp. 143–156, 2016. https://doi.org/10.2528/pierb15120802.Search in Google Scholar

[26] R. R. Hirani, S. K. Pathak, S. N. Shah, and D. K. Sharma, “Dispersion characteristics of dielectric tube waveguide loaded with plasma for leaky wave antenna application,” AEU – Int. J. Electron. Commun., vol. 83, pp. 123–130, 2018. https://doi.org/10.1016/j.aeue.2017.08.019.Search in Google Scholar

[27] K. A. Michalski and D. Zheng, “Rigorous analysis of open microstrip lines of arbitrary cross-section in bound and leaky regimes,” IEEE Trans. Microw. Theor. Tech., vol. 37, no. 12, pp. 2005–2010, 1989. https://doi.org/10.1109/22.44116.Search in Google Scholar

[28] P. Lampariello, F. Frezza, and A. A. Oliner, “The transition region between bound-wave and leaky-wave ranges for a partially dielectric-loaded open guiding structure,” IEEE Trans. Microw. Theor. Tech., vol. 38, no. 12, pp. 1831–1836, 1990. https://doi.org/10.1109/22.64563.Search in Google Scholar

[29] J. S. Bagby, C. H. Lee, D. P. Nyquist, and Y. Yuan, “Identification of propagation regimes on integrated microstrip transmission lines,” IEEE Trans. Microw. Theor. Tech., vol. 41, no. 11, pp. 1887–1894, 1993. https://doi.org/10.1109/22.273413.Search in Google Scholar

[30] C. Di Nallo, F. Frezza, A. Galli, P. Lampariello, and A. A. Oliner, “Properties of NRD-guide and H-guide higher-order modes: physical and nonphysical ranges,” IEEE Trans. Microw. Theor. Tech., vol. 42, no. 12, pp. 2429–2434, 1994. https://doi.org/10.1109/22.339777.Search in Google Scholar

[31] Y.-D. Lin, J. wen Sheen, and C. C. Tzuang, “Analysis and design of feeding structures for microstrip leaky wave antenna,” IEEE Trans. Microw. Theor. Tech., vol. 44, no. 9, pp. 1540–1547, 1996.10.1109/22.536602Search in Google Scholar

[32] Y. De Lin and J. W. Sheen, “Mode distinction and radiation-efficiency analysis of planar leaky-wave line source,” IEEE Trans. Microw. Theor. Tech., vol. 45, no. 10 PART 1, pp. 1672–1680, 1997.10.1109/22.641710Search in Google Scholar

[33] C. Luxey and J.-M. Laheurte, “Simple design of dual-beam leaky-wave antennas in microstrips,” IEE Proc. Microw. Antenn. Propag., vol. 144, no. 6, pp. 397–402, 1997. https://doi.org/10.1049/ip-map:19971407.10.1049/ip-map:19971407Search in Google Scholar

[34] F. Frezza, P. Lampariello, H. Shigesawa, M. Tsuji, and A. A. Oliner, “A versatile leakywave antenna based on stubloaded rectangular waveguide: part II effects of flanges and finite stub length,” IEEE Trans. Antenn. Propag., vol. 46, no. 7, pp. 1042–1046, 1998. https://doi.org/10.1109/8.704807.Search in Google Scholar

[35] A. A. Oliner, “Leakage from higher modes on microstrip line with application to antennas,” Radio Sci., vol. 22, no. 6, pp. 907–912, 1987. https://doi.org/10.1029/rs022i006p00907.Search in Google Scholar

[36] C. A. Balanis, Advanced Engineering Electromagnetics, New Jersey, Wiley, 1989.Search in Google Scholar

[37] H. Talisa, “Application of Davidenko’s method to the solution of dispersion relations in lossy waveguiding systems,” IEEE Trans. Microw. Theor. Tech., vol. MTT-33, no. 10, pp. 967–971, 1985. https://doi.org/10.1109/tmtt.1985.1133157.Search in Google Scholar

[38] K. Naishadham and Hui-Wen Yao, “An efficient computation of transient scattering by a perfectly conducting cylinder,” IEEE Trans. Antenn. Propag., vol. 41, no. 11, pp. 1509–1515, 1993. https://doi.org/10.1109/8.267350.Search in Google Scholar

[39] M. M. Shabat, Y. S. Madi, and D. Jäger, “Solution of lossy dielectric moving waveguides using numerical method (Davidenko’s approach),” Electromagnetics, vol. 22, no. 8, pp. 659–666, 2002. https://doi.org/10.1080/02726340290084184.Search in Google Scholar

[40] M. M. Shabat, D. Jager, N. M. Barakat, G. Strip, and P. Authority, “Numerical and analytical solutions of dispersion equation in lossy nonlinear waveguiding system,” Microw. Opt. Technol. Lett., vol. 22, no. 4, pp. 273–278, 1999. https://doi.org/10.1002/(sici)1098-2760(19990820)22:4<273::aid-mop18>3.0.co;2-2.10.1002/(SICI)1098-2760(19990820)22:4<273::AID-MOP18>3.0.CO;2-2Search in Google Scholar

[41] K. Naishadham and L. B. Felsen, “Dispersion of waves guided along a cylindrical substrate-superstrate layered medium,” IEEE Trans. Antenn. Propag., vol. 41, no. 3, pp. 304–313, 1993. https://doi.org/10.1109/8.233133.Search in Google Scholar

[42] H. A. N. Hejase, “On the use of Davidenko’s method in complex root search,” IEEE Trans. Microw. Theor. Tech., vol. 41, no. 1, pp. 141–143, 1993. https://doi.org/10.1109/22.210241.Search in Google Scholar

[43] K. Y. Kim, J. H. Lee, H. S. Tae, “Leaky mode characteristics of plasma column waveguides,” in IEEE Antennas and Propagation Society International Symposium, Washington, 2005, pp. 700–703.Search in Google Scholar

[44] E. Snitzer, “Cylindrical Dielectric Waveguide Modes,” J. Opt. Soc. Am., vol. 51, no. 5, pp. 491–498, 1961.10.1364/JOSA.51.000491Search in Google Scholar

[45] W. M. Bruno and W. B. Bridges, “Flexible dielectric waveguides with powder cores,” IEEE Trans. Microw. Theor. Tech., vol. 36, no. 5, pp. 882–890, 1988. https://doi.org/10.1109/22.3608.Search in Google Scholar

[46] M. J. Lahart, “Analysis of a cylindrical dielectric waveguide with three regions by use of an invariant mode-definition parameter,” J. Opt. Soc. Am. A, vol. 15, no. 3, p. 727, 1998. https://doi.org/10.1364/josaa.15.000727.Search in Google Scholar

[47] A. Kapoor and G. S. Singh, “Mode classification in cylindrical dielectric waveguides,” J. Lightwave Technol., vol. 18, no. 6, pp. 849–852, 2000. https://doi.org/10.1109/50.848397.Search in Google Scholar

[48] P. J. B. Clarricoats, “Propagation along unbounded and bounded dielectric rods. Part 1: propagation along an unbounded dielectric rod,” Proc. IEE Part C Monogr. Part C Monogr., vol. 108, no. 13, p. 170, 1961. https://doi.org/10.1049/pi-c.1961.0025.Search in Google Scholar

[49] A. Safaai-Jaz and G. L. Yip, “Classification of hybrid modes in cylindrical dielectric optical waveguides,” Radio Sci., vol. 12, no. 4, pp. 603–609, 1977.10.1029/RS012i004p00603Search in Google Scholar

[50] K. Morishita, “Hybrid modes in circular cylindrical optical fibers,” IEEE Trans. Microw. Theor. Tech., vol. 31, no. 4, pp. 344–350, 1983. https://doi.org/10.1109/tmtt.1983.1131495.Search in Google Scholar

Received: 2020-11-02
Accepted: 2021-03-09
Published Online: 2021-04-19
Published in Print: 2021-10-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/freq-2020-0189/html
Scroll to top button