Abstract
We establish upper bounds on the diameter of compact Kähler manifolds endowed with Kähler metrics whose volume form satisfies an Orlicz integrability condition. Our results extend previous estimates due to Fu–Guo–Song, Y. Li, and Guo–Phong–Song–Sturm. In particular, they do not involve any constraint on the vanishing of the volume form. Moreover, we show that singular Kähler–Einstein currents have finite diameter, provided that their local potentials are Hölder continuous.
Funding source: Agence Nationale de la Recherche
Award Identifier / Grant number: ANR-11-LABX-0040
Funding statement: This work has benefited from state aid managed by the ANR-11-LABX-0040, in connection with the research project HERMETIC, as well as by the ANR projects KARMAPOLIS and PARAPLUI and the Institut Universitaire de France.
References
[1] R. Berman and J.-P. Demailly, Regularity of plurisubharmonic upper envelopes in big cohomology classes, Perspectives in analysis, geometry, and topology, Progr. Math. 296, Birkhäuser/Springer, New York (2012), 39–66. 10.1007/978-0-8176-8277-4_3Suche in Google Scholar
[2] R. J. Berman, S. Boucksom, P. Eyssidieux, V. Guedj and A. Zeriahi, Kähler-Einstein metrics and the Kähler–Ricci flow on log Fano varieties, J. reine angew. Math. 751 (2019), 27–89. 10.1515/crelle-2016-0033Suche in Google Scholar
[3] B. Berndtsson, The openness conjecture and complex Brunn–Minkowski inequalities, Complex geometry and dynamics, Abel Symp. 10, Springer, Cham (2015), 29–44. 10.1007/978-3-319-20337-9_2Suche in Google Scholar
[4] F. Campana, H. Guenancia and M. Păun, Metrics with cone singularities along normal crossing divisors and holomorphic tensor fields, Ann. Sci. Éc. Norm. Supér. (4) 46 (2013), no. 6, 879–916. 10.24033/asens.2205Suche in Google Scholar
[5] S.-K. Chiu and G. Székelyhidi, Higher regularity for singular Kähler–Einstein metrics, Duke Math. J. 172 (2023), no. 18, 3521–3558. 10.1215/00127094-2022-0107Suche in Google Scholar
[6] D. Coman and V. Guedj, Quasiplurisubharmonic Green functions, J. Math. Pures Appl. (9) 92 (2009), no. 5, 456–475. 10.1016/j.matpur.2009.05.010Suche in Google Scholar
[7] J.-P. Demailly, S. Dinew, V. Guedj, H. H. Pham, S. Kołodziej and A. Zeriahi, Hölder continuous solutions to Monge–Ampère equations, J. Eur. Math. Soc. (JEMS) 16 (2014), no. 4, 619–647. 10.4171/jems/442Suche in Google Scholar
[8] J.-P. Demailly and J. Kollár, Semi-continuity of complex singularity exponents and Kähler–Einstein metrics on Fano orbifolds, Ann. Sci. Éc. Norm. Supér. (4) 34 (2001), no. 4, 525–556. 10.1016/S0012-9593(01)01069-2Suche in Google Scholar
[9] J.-P. Demailly, T. Peternell and M. Schneider, Kähler manifolds with numerically effective Ricci class, Compos. Math. 89 (1993), no. 2, 217–240. Suche in Google Scholar
[10] E. Di Nezza, V. Guedj and H. Guenancia, Families of singular Kähler–Einstein metrics, J. Eur. Math. Soc. (JEMS) 25 (2023), no. 7, 2697–2762. 10.4171/jems/1249Suche in Google Scholar
[11] E. Di Nezza and C. H. Lu, Generalized Monge–Ampère capacities, Int. Math. Res. Not. IMRN 2015 (2015), no. 16, 7287–7322. 10.1093/imrn/rnu166Suche in Google Scholar
[12] E. Di Nezza and S. Trapani, The regularity of envelopes, preprint (2021), https://arxiv.org/abs/2110.14314; to appear in Ann. Sci. Éc. Norm. Supér. (4). Suche in Google Scholar
[13] P. Eyssidieux, V. Guedj and A. Zeriahi, Singular Kähler–Einstein metrics, J. Amer. Math. Soc. 22 (2009), no. 3, 607–639. 10.1090/S0894-0347-09-00629-8Suche in Google Scholar
[14] X. Fu, B. Guo and J. Song, Geometric estimates for complex Monge–Ampère equations, J. reine angew. Math. 765 (2020), 69–99. 10.1515/crelle-2019-0020Suche in Google Scholar
[15] P. Griffiths and J. Harris, Principles of algebraic geometry, Pure Appl. Math., John Wiley & Sons, New York 1978. Suche in Google Scholar
[16] Q. Guan and X. Zhou, A proof of Demailly’s strong openness conjecture, Ann. of Math. (2) 182 (2015), no. 2, 605–616. 10.4007/annals.2015.182.2.5Suche in Google Scholar
[17] V. Guedj, H. Guenancia and A. Zeriahi, Continuity of singular Kähler–Einstein potentials, Int. Math. Res. Not. IMRN 2023 (2023), no. 2, 1355–1377. 10.1093/imrn/rnab294Suche in Google Scholar
[18] V. Guedj and A. Zeriahi, Degenerate complex Monge–Ampère equations, EMS Tracts Math. 26, European Mathematical Society, Zürich 2017. 10.4171/167Suche in Google Scholar
[19] B. Guo, D. H. Phong, J. Song and J. Sturm, Sobolev inequalities on Kähler spaces, preprint (2023), https://arxiv.org/abs/2311.00221. Suche in Google Scholar
[20] B. Guo, D. H. Phong, J. Song and J. Sturm, Diameter estimates in Kähler geometry, Comm. Pure Appl. Math. 77 (2024), no. 8, 3520–3556. 10.1002/cpa.22196Suche in Google Scholar
[21]
B. Guo, D. H. Phong and F. Tong,
On
[22] B. Guo, D. H. Phong, F. Tong and C. Wang, On the modulus of continuity of solutions to complex Monge–Ampère equations, preprint (2021), https://arxiv.org/abs/2112.02354. Suche in Google Scholar
[23] B. Guo and J. Song, Local noncollapsing for complex Monge–Ampère equations, J. reine angew. Math. 793 (2022), 225–238. 10.1515/crelle-2022-0069Suche in Google Scholar
[24] H.-J. Hein and S. Sun, Calabi–Yau manifolds with isolated conical singularities, Publ. Math. Inst. Hautes Études Sci. 126 (2017), 73–130. 10.1007/s10240-017-0092-1Suche in Google Scholar
[25] R. Kobayashi, Kähler–Einstein metric on an open algebraic manifold, Osaka J. Math. 21 (1984), no. 2, 399–418. Suche in Google Scholar
[26] S. Kołodziej, The complex Monge–Ampère equation, Acta Math. 180 (1998), no. 1, 69–117. 10.1007/BF02392879Suche in Google Scholar
[27]
S. Kołodziej,
Hölder continuity of solutions to the complex Monge–Ampère equation with the right-hand side in
[28] J. Kovats, Dini–Campanato spaces and applications to nonlinear elliptic equations, Electron. J. Differential Equations 1999 (1999), Paper No. 37. Suche in Google Scholar
[29] K. Kurdyka and P. Orro, Distance géodésique sur un sous-analytique, Rev. Mat. Univ. Complut. Madrid 10 (1997), 173–182. 10.5209/rev_REMA.1997.v10.17357Suche in Google Scholar
[30] C. Li, Yau–Tian–Donaldson correspondence for K-semistable Fano manifolds, J. reine angew. Math. 733 (2017), 55–85. 10.1515/crelle-2014-0156Suche in Google Scholar
[31] Y. Li, On collapsing Calabi–Yau fibrations, J. Differential Geom. 117 (2021), no. 3, 451–483. 10.4310/jdg/1615487004Suche in Google Scholar
[32] S. Lojasiewicz, Ensemble semi-analytiques, preprint IHES (1965). Suche in Google Scholar
[33] M. Paun, On the Albanese map of compact Kähler manifolds with numerically effective Ricci curvature, Comm. Anal. Geom. 9 (2001), no. 1, 35–60. 10.4310/CAG.2001.v9.n1.a2Suche in Google Scholar
[34] X. Rong and Y. Zhang, Continuity of extremal transitions and flops for Calabi–Yau manifolds, J. Differential Geom. 89 (2011), no. 2, 233–269. 10.4310/jdg/1324477411Suche in Google Scholar
[35] Y. A. Rubinstein, Smooth and singular Kähler–Einstein metrics, Geometric and spectral analysis, Contemp. Math. 630, American Mathematical Society, Providence (2014), 45–138. 10.1090/conm/630/12665Suche in Google Scholar
[36] G. Tian, Kähler–Einstein metrics with positive scalar curvature, Invent. Math. 130 (1997), no. 1, 1–37. 10.1007/s002220050176Suche in Google Scholar
[37] G. Tian and S.-T. Yau, Existence of Kähler–Einstein metrics on complete Kähler manifolds and their applications to algebraic geometry, Mathematical aspects of string theory, Adv. Ser. Math. Phys. 1, World Scientific, Singapore (1987), 574–628. 10.1142/9789812798411_0028Suche in Google Scholar
[38] V. Tosatti, Limits of Calabi–Yau metrics when the Kähler class degenerates, J. Eur. Math. Soc. (JEMS) 11 (2009), no. 4, 755–776. 10.4171/jems/165Suche in Google Scholar
[39] A. Zeriahi, Remarks on the modulus of continuity of subharmonic functions, preprint (2020), https://arxiv.org/abs/2007.08399. Suche in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Covariant projective representations of Hilbert–Lie groups
- Solutions of the minimal surface equation and of the Monge–Ampère equation near infinity
- A Lindemann–Weierstrass theorem for 𝐸-functions
- Topology and dynamics of compact plane waves
- Diameter of Kähler currents
- CscK metrics near the canonical class
- On 3-nondegenerate CR manifolds in dimension 7 (I): The transitive case
- The rigidity of eigenvalues on Kähler manifolds with positive Ricci lower bound
- Hodge–Tate stacks and non-abelian 𝑝-adic Hodge theory of v-perfect complexes on rigid spaces
Artikel in diesem Heft
- Frontmatter
- Covariant projective representations of Hilbert–Lie groups
- Solutions of the minimal surface equation and of the Monge–Ampère equation near infinity
- A Lindemann–Weierstrass theorem for 𝐸-functions
- Topology and dynamics of compact plane waves
- Diameter of Kähler currents
- CscK metrics near the canonical class
- On 3-nondegenerate CR manifolds in dimension 7 (I): The transitive case
- The rigidity of eigenvalues on Kähler manifolds with positive Ricci lower bound
- Hodge–Tate stacks and non-abelian 𝑝-adic Hodge theory of v-perfect complexes on rigid spaces