Startseite Mathematik Solutions of the minimal surface equation and of the Monge–Ampère equation near infinity
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Solutions of the minimal surface equation and of the Monge–Ampère equation near infinity

  • Qing Han und Zhehui Wang EMAIL logo
Veröffentlicht/Copyright: 20. November 2024

Abstract

Classical results assert that, under appropriate assumptions, solutions near infinity are asymptotic to linear functions for the minimal surface equation and to quadratic polynomials for the Monge–Ampère equation for dimension n 3 , with an extra logarithmic term for n = 2 . Via Kelvin transforms, we characterize remainders in the asymptotic expansions by a single function near the origin. Such a function is smooth in the entire neighborhood of the origin for the minimal surface equation in every dimension and for the Monge–Ampère equation in even dimension, but only C n 1 , α for the Monge–Ampère equation in odd dimension 𝑛, for any α ( 0 , 1 ) .

Award Identifier / Grant number: DMS-2305038

Award Identifier / Grant number: 12401247

Award Identifier / Grant number: 2023A1515110910

Funding statement: Qing Han is supported in part by the National Science Foundation under grant DMS-2305038. Zhehui Wang is supported in part by Young Scientists Fund of the National Natural Science Foundation of China under grant 12401247, and Guangdong Basic and Applied Basic Research Foundation under grant 2023A1515110910.

Acknowledgements

The authors would like to thank Joel Spruck for helpful discussions, and the referee for helpful suggestions. Zhehui Wang thanks Jie Chen for helpful suggestions.

References

[1] F. J. Almgren, Jr., Some interior regularity theorems for minimal surfaces and an extension of Bernstein’s theorem, Ann. of Math. (2) 84 (1966), 277–292. 10.2307/1970520Suche in Google Scholar

[2] J. Bao, H. Li and L. Zhang, Monge–Ampère equation on exterior domains, Calc. Var. Partial Differential Equations 52 (2015), 39–63. 10.1007/s00526-013-0704-7Suche in Google Scholar

[3] S. Bernstein, Über ein geometrisches Theorem und seine Anwendung auf die partiellen Differentialgleichungen vom elliptischen Typus, Math. Z. 26 (1927), 551–558. 10.1007/BF01475472Suche in Google Scholar

[4] L. Bers, Isolated singularities of minimal surfaces, Ann. of Math. (2) 53 (1951), 364–386. 10.2307/1969547Suche in Google Scholar

[5] E. Bombieri, E. De Giorgi and E. Giusti, Minimal cones and the Bernstein problem, Invent. Math. 7 (1969), 243–268. 10.1007/BF01404309Suche in Google Scholar

[6] L. Caffarelli, Topics in PDEs: The Monge–Ampère equation, Graduate course, Courant Institute, New York University, 1995. Suche in Google Scholar

[7] L. Caffarelli and Y. Li, An extension to a theorem of Jörgens, Calabi, and Pogorelov, Comm. Pure Appl. Math. 56 (2003), no. 5, 549–583. 10.1002/cpa.10067Suche in Google Scholar

[8] E. Calabi, Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens, Michigan Math. J. 5 (1958), 105–126. 10.1307/mmj/1028998055Suche in Google Scholar

[9] E. De Giorgi, Una estensione del teorema di Bernstein, Ann. Sc. Norm. Super. Pisa Cl. Sci. (3) 19 (1965), 79–85. Suche in Google Scholar

[10] L. Ferrer, A. Martínez and F. Milán, An extension of a theorem by K. Jörgens and a maximum principle at infinity for parabolic affine spheres, Math. Z. 230 (1999), no. 3, 471–486. 10.1007/PL00004700Suche in Google Scholar

[11] W. H. Fleming, On the oriented Plateau problem, Rend. Circ. Mat. Palermo (2) 11 (1962), 69–90. 10.1007/BF02849427Suche in Google Scholar

[12] Q. Han, Schauder estimates for elliptic operators with applications to nodal sets, J. Geom. Anal. 10 (2000), no. 3, 455–480. 10.1007/BF02921945Suche in Google Scholar

[13] G. Hong and Y. Yuan, Maximal hypersurfaces over exterior domains, Comm. Pure Appl. Math. 74 (2021), no. 3, 589–614. 10.1002/cpa.21929Suche in Google Scholar

[14] K. Jörgens, Über die Lösungen der Differentialgleichung r t s 2 = 1 , Math. Ann. 127 (1954), 130–134. 10.1007/BF01361114Suche in Google Scholar

[15] D. Li, Z. Li and Y. Yuan, A Bernstein problem for special Lagrangian equations in exterior domains, Adv. Math. 361 (2020), Article ID 106927. 10.1016/j.aim.2019.106927Suche in Google Scholar

[16] Z. Liu and J. Bao, Asymptotic expansion at infinity of solutions of Monge–Ampère type equations, Nonlinear Anal. 212 (2021), Article ID 112450. 10.1016/j.na.2021.112450Suche in Google Scholar

[17] J. Moser, On Harnack’s theorem for elliptic differential equations, Comm. Pure Appl. Math. 14 (1961), 577–591. 10.1002/cpa.3160140329Suche in Google Scholar

[18] J. C. C. Nitsche, Vorlesungen über Minimalflächen, Grundlehren Math. Wiss. 199, Springer, Berlin 1975. 10.1007/978-3-642-65619-4Suche in Google Scholar

[19] A. V. Pogorelov, On the improper convex affine hyperspheres, Geom. Dedicata 1 (1972), no. 1, 33–46. 10.1007/BF00147379Suche in Google Scholar

[20] R. M. Schoen, Uniqueness, symmetry, and embeddedness of minimal surfaces, J. Differential Geom. 18 (1983), no. 4, 791–809. 10.4310/jdg/1214438183Suche in Google Scholar

[21] L. Simon, Asymptotic behaviour of minimal graphs over exterior domains, Ann. Inst. H. Poincaré Anal. Non Linéaire 4 (1987), no. 3, 231–242. 10.1016/s0294-1449(16)30367-5Suche in Google Scholar

[22] J. Simons, Minimal varieties in riemannian manifolds, Ann. of Math. (2) 88 (1968), 62–105. 10.2307/1970556Suche in Google Scholar

Received: 2024-03-06
Revised: 2024-09-23
Published Online: 2024-11-20
Published in Print: 2025-03-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 4.2.2026 von https://www.degruyterbrill.com/document/doi/10.1515/crelle-2024-0091/html
Button zum nach oben scrollen