Startseite On the complex dynamics of birational surface maps defined over number fields
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On the complex dynamics of birational surface maps defined over number fields

  • Mattias Jonsson EMAIL logo und Paul Reschke
Veröffentlicht/Copyright: 7. April 2016

Abstract

We show that any birational selfmap of a complex projective surface that has dynamical degree greater than one and is defined over a number field automatically satisfies the Bedford–Diller energy condition after a suitable birational conjugacy. As a consequence, the complex dynamics of the map is well behaved. We also show that there is a well-defined canonical height function.

Award Identifier / Grant number: DMS-1266207

Award Identifier / Grant number: DMS-0943832

Award Identifier / Grant number: DMS-1045119

Funding statement: The first author was supported by NSF grant DMS-1266207. The second author was supported by NSF grants DMS-0943832 and DMS-1045119.

Acknowledgements

The authors would like to thank Jeff Diller, Romain Dujardin, Joe Silverman, and the referees for useful comments.

References

[1] E. Amerik, Existence of non-preperiodic algebraic points for a rational self-map of infinite order, Math. Res. Lett. 18 (2011), 251–256. 10.4310/MRL.2011.v18.n2.a5Suche in Google Scholar

[2] E. Bedford, On the dynamics of birational mappings of the plane, J. Korean Math. Soc. 40 (2003), 373–390. 10.4134/JKMS.2003.40.3.373Suche in Google Scholar

[3] E. Bedford and J. Diller, Energy and invariant measures for birational surface maps, Duke Math. J. 128 (2005), 331–368. 10.1215/S0012-7094-04-12824-6Suche in Google Scholar

[4] E. Bedford and J. Diller, Dynamics of a two parameter family of plane birational maps: Maximal entropy, J. Geom. Anal. 16 (2006), 409–430. 10.1007/BF02922060Suche in Google Scholar

[5] E. Bedford, M. Lyubich and J. Smillie, Distribution of periodic points of polynomial diffeomorphisms of 𝐂2, Invent. Math. 114 (1993), 277–288. 10.1007/BF01232671Suche in Google Scholar

[6] E. Bedford, M. Lyubich and J. Smillie, Polynomial diffeomorphisms of 𝐂2 IV: The measure of maximal entropy and laminar currents, Invent. Math. 112 (1993), 77–125. 10.1007/BF01232426Suche in Google Scholar

[7] E. Bedford and J. Smillie, Polynomial diffeomorphisms of 𝐂2: Currents, equilibrium measure and hyperbolicity, Invent. Math. 103 (1991), 69–99. 10.1007/BF01239509Suche in Google Scholar

[8] E. Bedford and J. Smillie, Polynomial diffeomorphisms of 𝐂2 II: Stable manifolds and recurrence, J. Amer. Math. Soc. 4 (1991), 657–679. 10.1090/S0894-0347-1991-1115786-3Suche in Google Scholar

[9] E. Bedford and J. Smillie, Polynomial diffeomorphisms of 𝐂2 III: Ergodicity, exponents and entropy of the equilibrium measure, Math. Ann. 294 (1992), 395–420. 10.1007/BF01934331Suche in Google Scholar

[10] E. Bombieri and W. Gubler, Heights in Diophantine geometry, Cambridge University Press, Cambridge 2006. Suche in Google Scholar

[11] S. Boucksom, C. Favre and M. Jonsson, Degree growth of meromorphic surface maps, Duke Math. J. 141 (2008), 519–538. 10.1215/00127094-2007-004Suche in Google Scholar

[12] X. Buff, Courants dynamiques pluripolaires, Ann. Fac. Sci. Toulouse Math. (6) 20 (2011), 203–214. 10.5802/afst.1290Suche in Google Scholar

[13] S. Cantat, Dynamique des automorphismes des surfaces K3, Acta Math. 187 (2001), 1–57. 10.1007/BF02392831Suche in Google Scholar

[14] G. Call and J. Silverman, Canonical heights on varieties with morphisms, Compos. Math. 89 (1993), 163–205. Suche in Google Scholar

[15] H. De Thélin and G. Vigny, Entropy of meromorphic maps and dynamics of birational maps, Mém. Soc. Math. Fr. (N.S.) 122 (2010). 10.24033/msmf.434Suche in Google Scholar

[16] J. Diller, Dynamics of birational maps of 2, Indiana Univ. Math. J. 45 (1996), 721–772. 10.1512/iumj.1996.45.1331Suche in Google Scholar

[17] J. Diller, R. Dujardin and V. Guedj, Dynamics of meromorphic maps II: Energy and invariant measure, Comment. Math. Helv. 86 (2011), 277–316. 10.4171/CMH/224Suche in Google Scholar

[18] J. Diller and C. Favre, Dynamics of bimeromorphic maps of surfaces, Amer. J. Math. 123 (2001), 1135–1169. 10.1353/ajm.2001.0038Suche in Google Scholar

[19] J. Diller, D. Jackson and A. Sommese, Invariant curves for birational surface maps, Trans. Amer. Math. Soc. 359 (2007), 2973–2991. 10.1090/S0002-9947-07-04162-1Suche in Google Scholar

[20] T.-C. Dinh and N. Sibony, Une borne supérieure pour l’entropie topologique d’une application rationelle, Ann. of Math. (2) 161 (2005), 1637–1644. 10.4007/annals.2005.161.1637Suche in Google Scholar

[21] R. Dujardin, Laminar currents and birational dynamics, Duke Math. J. 131 (2001), 219–247. 10.1215/S0012-7094-06-13122-8Suche in Google Scholar

[22] R. Dujardin, Laminar currents in 2, Math. Ann. 325 (2003), 745–765. 10.1007/s00208-002-0402-9Suche in Google Scholar

[23] C. Favre, Points périodiques d’applications birationelles de 2, Ann. Inst. Fourier (Grenoble) 48 (1998), 999–1023. 10.5802/aif.1646Suche in Google Scholar

[24] C. Favre, Multiplicity of holomorphic functions, Math. Ann. 316 (2000), 355–378. 10.1007/s002080050016Suche in Google Scholar

[25] S. Friedland, Entropy of polynomial and rational maps, Ann. of Math. (2) 133 (1991), 359–368. 10.2307/2944341Suche in Google Scholar

[26] M. Jonsson and E. Wulcan, Canonical heights for plane polynomial maps of small topological degree, Math. Res. Lett. 19 (2012), 1207–1217. 10.4310/MRL.2012.v19.n6.a3Suche in Google Scholar

[27] S. Kawaguchi, Canonical height functions for affine plane automorphisms, Math. Ann. 335 (2006), 285–310. 10.1007/s00208-006-0750-ySuche in Google Scholar

[28] S. Kawaguchi, Projective surface automorphisms of positive entropy from an arithmetic viewpoint, Amer. J. Math. 130 (2008), 159–186. 10.1353/ajm.2008.0008Suche in Google Scholar

[29] S. Kawaguchi, Local and global canonical height functions for affine space regular automorphisms, Algebra Number Theory 7 (2013), 1225–1252. 10.2140/ant.2013.7.1225Suche in Google Scholar

[30] S. Kawaguchi and J. H. Silverman, On the dynamical and arithmetic degrees of rational self-maps of algebraic varieties, J. reine angew. Math. 713 (2016), 21–48. 10.1515/crelle-2014-0020Suche in Google Scholar

[31] R. Lazarsfeld, Positivity in algebraic geometry I, Ergeb. Math. Grenzgeb. (3) 48, Springer, Berlin 2004. 10.1007/978-3-642-18808-4Suche in Google Scholar

[32] J. Milnor, Dynamics in one complex variable, 3rd ed., Ann. of Math. Stud. 160, Princeton University Press, Princeton 2006. Suche in Google Scholar

[33] A. Russakovskii and B. Shiffman, Value distribution for sequences of rational mappings and complex dynamics, Indiana Univ. Math. J. 46 (1997), 897–932. 10.1512/iumj.1997.46.1441Suche in Google Scholar

[34] N. Sibony, Dynamique des applications rationnelles de 𝐏k, Dynamique et géométrie complexes (Lyon 1997), Panor. Synthèses 8, Société Mathématique de France, Paris (1999), 97–185. Suche in Google Scholar

[35] J. H. Silverman, Rational points on K3 surfaces: A new canonical height, Invent. Math. 105 (1991), 343–373. 10.1007/BF01232270Suche in Google Scholar

[36] J. H. Silverman, Integer points, Diophantine approximation and iteration of rational maps, Duke Math. J. 71 (1993), 793–829. 10.1215/S0012-7094-93-07129-3Suche in Google Scholar

[37] J. H. Silverman, Geometric and arithmetic properties of the Hénon map, Math. Z. 215 (1994), 237–250. 10.1007/BF02571713Suche in Google Scholar

[38] J. H. Silverman, Dynamical degrees, arithmetic entropy, and canonical heights for dominant rational self-maps of projective space, Ergodic Theory Dynam. Systems 34 (2014), 647–678. 10.1017/etds.2012.144Suche in Google Scholar

[39] G. Vigny, Exponential decay of correlations for generic regular birational maps of k, Math. Ann. 362 (2015), 1033–1054. 10.1007/s00208-014-1131-6Suche in Google Scholar

[40] J. Xie, Periodic points of birationals maps on projective surfaces, Duke Math. J. 164 (2015), 903–932. 10.1215/00127094-2877402Suche in Google Scholar

Received: 2015-05-17
Revised: 2015-11-25
Published Online: 2016-04-07
Published in Print: 2018-11-01

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/crelle-2015-0113/html
Button zum nach oben scrollen