Abstract
Let
is obtained for any nonzero fractional ideal
Funding source: Országos Tudományos Kutatási Alapprogramok
Award Identifier / Grant number: NK104183
Funding source: Magyar Tudományos Akadémia
Award Identifier / Grant number: Postdoctoral Grant
Funding statement: The author was partially supported by OTKA grant No. NK104183 and the Postdoctoral Grant of the Hungarian Academy of Sciences.
Acknowledgements
The author is grateful to his advisor, Gergely Harcos, for the guidance during his PhD studies at Central European University, Budapest. The author also thanks Valentin Blomer for all his advices. The research for this paper was a part of the author’s PhD thesis at the Central European University, Budapest, Hungary.
References
[1] V. Blomer and F. Brumley, On the Ramanujan conjecture over number fields, Ann. of Math. (2) 174 (2011), no. 1, 581–605. 10.4007/annals.2011.174.1.18Search in Google Scholar
[2] V. Blomer and G. Harcos, The spectral decomposition of shifted convolution sums, Duke Math. J. 144 (2008), no. 2, 321–339. 10.1215/00127094-2008-038Search in Google Scholar
[3] V. Blomer and G. Harcos, Twisted L-functions over number fields and Hilbert’s eleventh problem, Geom. Funct. Anal. 20 (2010), no. 1, 1–52; erratum, www.renyi.hu/~gharcos/hilbert_erratum.pdf. 10.1007/s00039-010-0063-xSearch in Google Scholar
[4] R. W. Bruggeman and Y. Motohashi, A note on the mean value of the zeta and L-functions. XIII, Proc. Japan Acad. Ser. A Math. Sci. 78 (2002), no. 6, 87–91. 10.3792/pjaa.78.87Search in Google Scholar
[5] R. W. Bruggeman and Y. Motohashi, Sum formula for Kloosterman sums and fourth moment of the Dedekind zeta-function over the Gaussian number field, Funct. Approx. Comment. Math. 31 (2003), 23–92. 10.7169/facm/1538186640Search in Google Scholar
[6] R. W. Bruggeman and Y. Motohashi, A new approach to the spectral theory of the fourth moment of the Riemann zeta-function, J. reine angew. Math. 579 (2005), 75–114. 10.1515/crll.2005.2005.579.75Search in Google Scholar
[7] D. Bump, Automorphic forms and representations, Cambridge Stud. Adv. Math. 55, Cambridge University Press, Cambridge 1997. 10.1017/CBO9780511609572Search in Google Scholar
[8] D. Bump, Lie groups, Grad. Texts in Math. 225, Springer, New York 2004. 10.1007/978-1-4757-4094-3Search in Google Scholar
[9] W. Casselman, On some results of Atkin and Lehner, Math. Ann. 201 (1973), 301–314. 10.1007/BF01428197Search in Google Scholar
[10] J. W. Cogdell and I. Piatetski-Shapiro, The arithmetic and spectral analysis of Poincaré series, Perspect. Math. 13, Academic Press, Boston 1990. Search in Google Scholar
[11] J. W. Cogdell, I. Piatetski-Shapiro and P. Sarnak, Estimates on the critical line for Hilbert modular L-functions and applications, preprint (2001). Search in Google Scholar
[12] J. Dixmier and P. Malliavin, Factorisations de fonctions et de vecteurs indéfiniment différentiables, Bull. Sci. Math. (2) 102 (1978), no. 4, 307–330. Search in Google Scholar
[13] W. Duke, J. Friedlander and H. Iwaniec, Bounds for automorphic L-functions, Invent. Math. 112 (1993), no. 1, 1–8. 10.1007/BF01232422Search in Google Scholar
[14] W. Duke, J. B. Friedlander and H. Iwaniec, The subconvexity problem for Artin L-functions, Invent. Math. 149 (2002), no. 3, 489–577. 10.1007/s002220200223Search in Google Scholar
[15] T. Estermann, Über die Darstellungen einer Zahl als Differenz von zwei Produkten, J. reine angew. Math. 164 (1931), 173–182. 10.1515/crll.1931.164.173Search in Google Scholar
[16] D. Flath, Decomposition of representations into tensor products, Automorphic forms, representations and L-functions (Oregon 1977), Proc. Sympos. Pure Math. 33, American Mathematical Society, Providence (1979), 179–183. 10.1090/pspum/033.1/546596Search in Google Scholar
[17] S. Gelbart and H. Jacquet, Forms of GL(2) from the analytic point of view, Automorphic forms, representations and L-functions (Oregon 1977), Proc. Sympos. Pure Math. 33, American Mathematical Society, Providence (1979), 213–251. 10.1090/pspum/033.1/546600Search in Google Scholar
[18] A. Good, Beiträge zur Theorie der Dirichletreihen, die Spitzenformen zugeordnet sind, J. Number Theory 13 (1981), no. 1, 18–65. 10.1016/0022-314X(81)90028-7Search in Google Scholar
[19] A. Good, Cusp forms and eigenfunctions of the Laplacian, Math. Ann. 255 (1981), no. 4, 523–548. 10.1007/BF01451932Search in Google Scholar
[20] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, 7th ed., Elsevier, Amsterdam 2007. Search in Google Scholar
[21] D. R. Heath-Brown, The fourth power moment of the Riemann zeta function, Proc. Lond. Math. Soc. (3) 38 (1979), no. 3, 385–422. 10.1112/plms/s3-38.3.385Search in Google Scholar
[22] A. E. Ingham, Mean-value theorems in the theory of the Riemann zeta-function, Proc. Lond. Math. Soc. (2) 27 (1926), no. 1, 273–300. 10.1112/plms/s2-27.1.273Search in Google Scholar
[23] A. E. Ingham, Some asymptotic formulae in the theory of numbers, J. Lond. Math. Soc. (2) (1927), no. 3, 202–208. 10.1112/jlms/s1-2.3.202Search in Google Scholar
[24] H. Jacquet and R. P. Langlands, Automorphic forms on GL(2), Lecture Notes in Math. 114, Springer, Berlin 1970. 10.1007/BFb0058988Search in Google Scholar
[25] K. Khuri-Makdisi, On the Fourier coefficients of nonholomorphic Hilbert modular forms of half-integral weight, Duke Math. J. 84 (1996), no. 2, 399–452. 10.1215/S0012-7094-96-08414-8Search in Google Scholar
[26] H. Lokvenec-Guleska, Sum formula for SL(2) over imaginary quadratic fields, Ph.D. thesis, Utrecht University, Utrecht, 2004. Search in Google Scholar
[27] P. Maga, A semi-adelic Kuznetsov formula over number fields, Int. J. Number Theory 9 (2013), no. 7, 1649–1681. 10.1142/S1793042113500498Search in Google Scholar
[28] P. Maga, Subconvexity and shifted convolution sums over number fields, Ph.D. thesis, Central European University, Budapest, 2013. Search in Google Scholar
[29]
P. Michel and A. Venkatesh,
The subconvexity problem for
[30]
T. Miyake,
On automorphic forms on
[31] Y. Motohashi, The binary additive divisor problem, Ann. Sci. Éc. Norm. Supér. (4) 27 (1994), no. 5, 529–572. 10.24033/asens.1700Search in Google Scholar
[32] Y. Motohashi, Spectral theory of the Riemann zeta-function, Cambridge Tracts in Math. 127, Cambridge University Press, Cambridge 1997. 10.1017/CBO9780511983399Search in Google Scholar
[33] P. Sarnak, Estimates for Rankin–Selberg L-functions and quantum unique ergodicity, J. Funct. Anal. 184 (2001), no. 2, 419–453. 10.1006/jfan.2001.3783Search in Google Scholar
[34] A. Selberg, On the estimation of Fourier coefficients of modular forms, Proc. Sympos. Pure Math. 8, American Mathematical Society, Providence (1965), 1–15. 10.1090/pspum/008/0182610Search in Google Scholar
[35] M. Sugiura, Unitary representations and harmonic analysis. An introduction, 2nd ed., North-Holland Math. Libr. 44, North-Holland Publishing, Amsterdam 1990. Search in Google Scholar
[36] A. Venkatesh, Sparse equidistribution problems, period bounds and subconvexity, Ann. of Math. (2) 172 (2010), no. 2, 989–1094. 10.4007/annals.2010.172.989Search in Google Scholar
[37] G. N. Watson, A treatise on the theory of Bessel functions, 2nd ed., Cambridge Math. Lib., Cambridge University Press, Cambridge 1995. Search in Google Scholar
[38] A. Weil, Basic number theory, 3rd ed., Grundlehren Math. Wiss. 144, Springer, Berlin 1974. 10.1007/978-3-642-61945-8Search in Google Scholar
[39] E. T. Whittaker and G. N. Watson, A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions, Cambridge Math. Libr., Cambridge University Press, Cambridge 1996. Search in Google Scholar
[40]
H. Wu,
Burgess-like subconvex bounds for
© 2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- The spectral decomposition of shifted convolution sums over number fields
- Hodge theory on Cheeger spaces
- Geometric structures of collapsing Riemannian manifolds II
- Combinatorics and topology of proper toric maps
- On the long time behaviour of the conical Kähler–Ricci flows
- On invariance of plurigenera for foliations on surfaces
- Behavior of canonical divisors under purely inseparable base changes
- Algebraic nature of singular Riemannian foliations in spheres
- On the complex dynamics of birational surface maps defined over number fields
Articles in the same Issue
- Frontmatter
- The spectral decomposition of shifted convolution sums over number fields
- Hodge theory on Cheeger spaces
- Geometric structures of collapsing Riemannian manifolds II
- Combinatorics and topology of proper toric maps
- On the long time behaviour of the conical Kähler–Ricci flows
- On invariance of plurigenera for foliations on surfaces
- Behavior of canonical divisors under purely inseparable base changes
- Algebraic nature of singular Riemannian foliations in spheres
- On the complex dynamics of birational surface maps defined over number fields