Abstract
We show that if
Funding source: Engineering and Physical Sciences Research Council
Award Identifier / Grant number: P40216
Funding statement: Both the authors were partially supported by an EPSRC grant (P40216).
Acknowledgements
We would like to thank Y. Gongyo, J. V. Pereira, M. McQuillan, R. Pignatelli and H. Tanaka for several very useful discussions and comments. The work started as an attempt to answer a question raised by J. V. Pereira during the workshop “Foliation theory in algebraic geometry” supported by the Simons foundation. We would like to thank the referee for carefully reading our manuscript, for suggesting several improvements and for pointing out some errors in an earlier version of this paper.
References
[1] F. Ambro, Shokurov’s boundary property, J. Differential Geom. 67 (2004), no. 2, 229–255. 10.4310/jdg/1102536201Search in Google Scholar
[2] W. Barth, K. Hulek, C. Peters and A. de Ven, Compact complex surfaces, 2nd ed., Ergeb. Math. Grenzgeb. (3) 4, Springer, Berlin 2004. 10.1007/978-3-642-57739-0Search in Google Scholar
[3] C. Birkenhake and H. Lange, Complex abelian varieties, 2nd ed., Grundlehren Math. Wiss. 302, Springer, Berlin 2004. 10.1007/978-3-662-06307-1Search in Google Scholar
[4] M. Brunella, Feuilletages holomorphes sur les surfaces complexes compactes, Ann. Sci. Éc. Norm. Supér. (4) 30 (1997), no. 5, 569–594. 10.1016/S0012-9593(97)89932-6Search in Google Scholar
[5] M. Brunella, Courbes entières et feuilletages holomorphes, Enseign. Math. (2) 45 (1999), no. 1–2, 195–216. Search in Google Scholar
[6] M. Brunella, Birational geometry of foliations, Monogr. Mat., Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro 2000. Search in Google Scholar
[7] M. Brunella, Invariance par déformations de la dimension de Kodaira d’un feuilletage sur une surface, Essays on geometry and related topics. Vols 1 and 2, Monogr. Enseign. Math. 38, Enseignement Mathématique, Geneva (2001), 113–132. Search in Google Scholar
[8] C. Camacho and P. Sad, Invariant varieties through singularities of holomorphic vector fields, Ann. of Math. (2) 115 (1982), no. 3, 579–595. 10.2307/2007013Search in Google Scholar
[9] G. Faltings and C.-L. Chai, Degeneration of abelian varieties, Ergeb. Math. Grenzgeb. (3) 22, Springer, Berlin 1990. 10.1007/978-3-662-02632-8Search in Google Scholar
[10] R. Friedman and J. Morgan, Smooth four-manifolds and complex surfaces, Ergeb. Math. Grenzgeb. (3) 27, Springer, Berlin 1994. 10.1007/978-3-662-03028-8Search in Google Scholar
[11] C. Hacon and C. Xu, Existence of log canonical closures, Invent. Math. 192 (2013), 161–195. 10.1007/s00222-012-0409-0Search in Google Scholar
[12] K. Kodaira, On stability of compact submanifolds of complex manifolds, Amer. J. Math. 85 (1963), 79–94. 10.2307/2373187Search in Google Scholar
[13] K. Kodaira, On the structure of compact complex analytic surfaces. I, Amer. J. Math. 86 (1964), 751–798. 10.2307/2373157Search in Google Scholar
[14] J. Kollár, Flips and abundance for algebraic threefolds. A summer seminar at the University of Utah (Salt Lake City 1991), Astérisque 211, Société Mathématique de France, Paris 1992. Search in Google Scholar
[15] J. Kollár and S. Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Math. 134, Cambridge University Press, Cambridge 1998. 10.1017/CBO9780511662560Search in Google Scholar
[16] M. McQuillan, Canonical models of foliations, Pure Appl. Math. Q. 4 (2008), no. 3, 877–1012. 10.4310/PAMQ.2008.v4.n3.a9Search in Google Scholar
[17] L. Mendes, Kodaira dimension of holomorphic singular foliations, Bol. Soc. Brasil. Mat. (N.S.) 31 (2000), no. 2, 127–143. 10.1007/BF01244239Search in Google Scholar
[18] Y. Miyaoka, Deformations of a morphism along a foliation and applications, Algebraic geometry (Brunswick 1985), Proc. Sympos. Pure Math. 46, American Mathematical Society, Providence (1987), 245–268. 10.1090/pspum/046.1/927960Search in Google Scholar
[19] D. Mumford, J. Fogarty and F. Kirwan, Geometric invariant theory, 3rd ed., Ergeb. Math. Grenzgeb. (2) 34, Springer, Berlin 1994. 10.1007/978-3-642-57916-5Search in Google Scholar
[20] M. van Opstall, Stable degenerations of surfaces isogenous to a product of curves, Proc. Amer. Math. Soc. 134 (2006), no. 10, 2801–2806. 10.1090/S0002-9939-06-08517-0Search in Google Scholar
[21] M. Păun, Siu’s invariance of plurigenera: A one-tower proof, J. Differential Geom. 76 (2007), no. 3, 485–493. 10.4310/jdg/1180135695Search in Google Scholar
[22] J. Pereira, On the Poincaré problem for foliations of general type, Math. Ann. 323 (2002), no. 2, 217–226. 10.1007/s002080100277Search in Google Scholar
[23] J. Pereira, On the height of foliated surfaces with vanishing Kodaira dimension, Publ. Mat. 49 (2005), no. 2, 363–373. 10.5565/PUBLMAT_49205_06Search in Google Scholar
[24] F. Serrano, Isotrivial fibred surfaces, Ann. Mat. Pura Appl. (4) 171 (1996), 63–81. 10.1007/BF01759382Search in Google Scholar
[25] Y.-T. Siu, Invariance of plurigenera, Invent. Math. 134 (1998), no. 3, 661–673. 10.1007/s002220050276Search in Google Scholar
[26] Y.-T. Siu, Extension of twisted pluricanonical sections with plurisubharmonic weight and invariance of semipositively twisted plurigenera for manifolds not necessarily of general type, Complex geometry (Göttingen 2000), Springer, Berlin (2002), 223–277. 10.1007/978-3-642-56202-0_15Search in Google Scholar
[27] S. Tufféry, Déformations de courbes avec action de groupe, Forum Math. 5 (1993), no. 3, 243–259. 10.1515/form.1993.5.243Search in Google Scholar
© 2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- The spectral decomposition of shifted convolution sums over number fields
- Hodge theory on Cheeger spaces
- Geometric structures of collapsing Riemannian manifolds II
- Combinatorics and topology of proper toric maps
- On the long time behaviour of the conical Kähler–Ricci flows
- On invariance of plurigenera for foliations on surfaces
- Behavior of canonical divisors under purely inseparable base changes
- Algebraic nature of singular Riemannian foliations in spheres
- On the complex dynamics of birational surface maps defined over number fields
Articles in the same Issue
- Frontmatter
- The spectral decomposition of shifted convolution sums over number fields
- Hodge theory on Cheeger spaces
- Geometric structures of collapsing Riemannian manifolds II
- Combinatorics and topology of proper toric maps
- On the long time behaviour of the conical Kähler–Ricci flows
- On invariance of plurigenera for foliations on surfaces
- Behavior of canonical divisors under purely inseparable base changes
- Algebraic nature of singular Riemannian foliations in spheres
- On the complex dynamics of birational surface maps defined over number fields