Startseite A novel nonlinear sliding mode observer to estimate biomass for lactic acid production
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A novel nonlinear sliding mode observer to estimate biomass for lactic acid production

  • Pablo A. López-Pérez , Milagros López-López , Carlos A. Núñez-Colín , Hamid Mukhtar , Ricardo Aguilar-López und Vicente Peña-Caballero EMAIL logo
Veröffentlicht/Copyright: 27. Dezember 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This study deals with the problem of estimating the amount of biomass and lactic acid concentration in a lactic acid production process. A continuous stirred tank bioreactor was used for the culture of Lactobacillus helveticus. A nonlinear sliding mode observer is proposed and designed, which gives an estimate of both the biomass and lactic acid concentrations as a function of glucose uptake from the culture medium. Numerical results are given to illustrate the effectiveness of the proposed observer against a standard sliding-mode observer. It was found that the proposed observer worked very well for the benchmark bioreactor model. Also, the numerical results indicated that the proposed estimation methodology was robust to the uncertainties associated with un-modelled dynamics. These new sensing technologies, when coupled to software models, improve performance for smart process control, monitoring, and prediction.


Corresponding author: Vicente Peña-Caballero, University of Guanajuato, Av. Ing. Barros Sierra No. 201 Ejido de Santa María del Refugio, C.P. 38140 Celaya, Guanajuato, Mexico, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The author V.P.C. thanks the DAIP-UG and the rectory of the CCS for the support of the project “Design of nonlinear estimators with application to biological systems” number CIDSC-3291201.

  3. Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chan, JCL, Lee, TH. Sliding mode observer-based fault-tolerant secondary control of microgrids. Electronics 2020;9:1417. https://doi.org/10.3390/electronics9091417.Suche in Google Scholar

2. Ortega, R, Bobtsov, A, Dochain, D, Nikolaev, N. State observers for reaction systems with improved convergence rates. J Process Control 2019;83:53–62. https://doi.org/10.1016/j.jprocont.2019.08.003.Suche in Google Scholar

3. Dochain, D. State and parameter estimation in chemical and biochemical processes: a tutorial. J Process Control 2003;13:801–18. https://doi.org/10.1016/s0959-1524(03)00026-x.Suche in Google Scholar

4. Rubén, RJ, Castillo-Baltazar, OS, Peña-Caballero, V, Quintana, FAO, Castro, HB. Sofware sensors design for monitoring of variables in reactors: a biological processes application. In: 2015 IEEE 2nd Colombian Conference on Automatic Control (CCAC), Manizales; 2015:1–7 pp.10.1109/CCAC.2015.7345219Suche in Google Scholar

5. Wang, Y, Chan, KL, Abdel-Rahman, MA. Dynamic simulation of continuous mixed sugar fermentation with increasing cell retention time for lactic acid production using enterococcus mundtii QU 25. Biotechnol Biofuels 2020;13:112. https://doi.org/10.1186/s13068-020-01752-6.Suche in Google Scholar PubMed PubMed Central

6. Cennamo, N, Massarotti, D, Conte, L, Zeni, L. Low cost sensors based on SPR in a plastic optical fiber for biosensor implementation. Sensors 2011;11:11752–60. https://doi.org/10.3390/s111211752.Suche in Google Scholar PubMed PubMed Central

7. Aguilar López, R, Ruiz Camacho, B, Neria-González, MI, Rangel, E, Santos, O, Pérez, L, et al.. State estimation based on nonlinear observer for hydrogen production in a photocatalytic anaerobic bioreactor. Int J Chem React Eng 2017;15:20170004. https://doi.org/10.1515/ijcre-2017-0004.Suche in Google Scholar

8. Beniich, N, Bouhtouri, AE, Dochain, D. Constrained global adaptive controller for a plug-flow tubular reactor with partial temperature measurements. IMA J Math Control Inf 2018;36:1089–104. https://doi.org/10.1093/imamci/dny019.Suche in Google Scholar

9. Liu, D, Mannan, AA, Han, Y, Oyarzún, DA, Zhang, F. Dynamic metabolic control: towards precision engineering of metabolism. J Ind Microbiol Biotechnol 2018;45:535–43. https://doi.org/10.1007/s10295-018-2013-9.Suche in Google Scholar PubMed

10. Cacopardo, L, Mattei, G, Ahluwalia, A. A new load-controlled testing method for viscoelastic characterisation through stress-rate measurements. Materialia 2020;9:100552. https://doi.org/10.1016/j.mtla.2019.100552.Suche in Google Scholar

11. Classen, J, Aupert, F, Reardon, KF, Solle, D, Scheper, T. Spectroscopic sensors for in-line bioprocess monitoring in research and pharmaceutical industrial application. Anal Bioanal Chem 2017;409:651–66. https://doi.org/10.1007/s00216-016-0068-x.Suche in Google Scholar PubMed

12. Visali, K, Chitra, M, Pappa, N. Automation and design of real-time controllers for a laboratory scale bioreactor. In: International Conference on Innovations in Control, Communication and Information Systems (ICICCI), Greater Noida, India; 2017:1–6 pp.10.1109/ICICCIS.2017.8660815Suche in Google Scholar

13. Ulonska, S, Waldschitz, D, Kager, J, Herwig, C. Model predictive control in comparison to elemental balance control in an E. coli fed-batch. Chem Eng Sci 2018;191:459–67. https://doi.org/10.1016/j.ces.2018.06.074.Suche in Google Scholar

14. Fjordbak Nielsen, R, Arjomand Kermani, N, Cour Freiesleben, L, Gernaey, KV, Soheil Mansouri, S. Novel strategies for predictive particle monitoring and control using advanced image analysis. In: Anton, K, Zondervan, E, Lakerveld, R, Özkan, L, editors. Proceedings of the 29th European Symposium on Computer Aided Process Engineering. Elsiever; 2019, vol. 46:435–40 pp. https://doi.org/10.1016/B978-0-12-818634-3.50240-X.Suche in Google Scholar

15. Rapaport, A, Dochain, D. A robust asymptotic observer for systems that converge to unobservable states. A batch reactor case study. IEEE Trans Automat Control 2020;65:2693–99. https://doi.org/10.1109/tac.2011.2159424.Suche in Google Scholar

16. Lara-Cisneros, G, Dochain, D. On-line estimation of the VFA concentration in anaerobic digestion processes based on a super-twisting observer. In: 2018, 5th International Conference on Control, Decision and Information Technologies (CoDIT), Thessaloniki. 2018:545–9 pp.10.1109/CoDIT.2018.8394870Suche in Google Scholar

17. Kalman Rudolf, E. A new approach to linear filtering predictions problems. Trans ASME J Basic Eng Ser 1960;82D:35–45.10.1115/1.3662552Suche in Google Scholar

18. Luenberger, D. An introduction to observers. IEEE Trans Automat Contr 1971;16:596–602. https://doi.org/10.1109/tac.1971.1099826.Suche in Google Scholar

19. López Pérez, PA, Aguilar-López, R, Femat, R. Control in bioengineering and bioprocessing: modeling, estimation and the use of soft sensors. USA: Wiley; 2020.10.1002/9781119296317Suche in Google Scholar

20. Lade, H, Paul, D, Kweon, JH. Isolation and molecular characterization of biofouling bacteria and profiling of quorum sensing signal molecules from membrane bioreactor activated sludge. Sensors 2015;15:4766–80. https://doi.org/10.3390/ijms15022255.Suche in Google Scholar PubMed PubMed Central

21. Kumar, EG, Arunshankar, J. Control of TITO processes using sliding mode controller tuned by ITAE minimizing criterion based Nelder-Mead algorithm. Chem Prod Process Model 2022;17:669–80. https://doi.org/10.1515/cppm-2020-0120.Suche in Google Scholar

22. Rodriguez-Mata, E, Flores, G, Amabilis-Sosa, A, Gonzalez-Huitron, LE, Hernández-González, VA, Lopéz-Peréz, PA. A turbidity sensor development based on NL-PI observers: experimental application to the control of a Sinaloa’s River Spirulina maxima cultivation Open. Chem 2020;18:1349–61.10.1515/chem-2020-0119Suche in Google Scholar

23. Ali, JM, Hoang, NH, Hussain, MA, Dochain, D. Review and classification of recent observers applied in chemical process systems. Comput Chem Eng 2015;76:27–41. https://doi.org/10.1016/j.compchemeng.2015.01.019.Suche in Google Scholar

24. Abedi, E, Hashemi, SMB. Lactic acid production – producing microorganisms and substrates sources-state of art. Heliyon 2020;6:4974. https://doi.org/10.1016/j.heliyon.2020.e04974.Suche in Google Scholar PubMed PubMed Central

25. Schepers, AW, Thibault, J, Lacroix, C. Comparison of simple neural networks and nonlinear regression models for descriptive modeling of Lactobacillus helveticus growth in pH-controlled batch cultures. Enzyme Microb Technol 2000;26:431–45. https://doi.org/10.1016/s0141-0229(99)00183-0.Suche in Google Scholar PubMed

26. Gernaey, KV, Huusom, JK, Gani, R, editors. 12th International symposium on process systems engineering and 25th European symposium on computer aided process engineering. 31 May – 4 June. Copenhagen, Denmark: Elsevier B.V.; 2015.Suche in Google Scholar

27. Ben Youssef, C, Guillou, V, Olmos-Dichara, A. Modelling and adaptive control strategy in a lactic fermentation process. Control Eng Pract 2000;8:1297–307. https://doi.org/10.1016/s0967-0661(00)00061-7.Suche in Google Scholar

28. Petre, E, Selişteanu, D, Şendrescu, D. Neural networks based adaptive control of a fermentation bioprocess for lactic acid production. In: Proceedings of the 3rd international conference on intelligent decision technologies. SIST. 2011, vol. 10:201–12 pp.10.1007/978-3-642-22194-1_21Suche in Google Scholar

29. Bhusari, AA, Mazumdar, B, Rathod, AP. Synthesis and characterization of bio catalyst prepared from dairy waste for lactic acid esterification. Int J Chem React Eng 2021;19:939–48. https://doi.org/10.1515/ijcre-2021-0098.Suche in Google Scholar

30. Ahring, BK, Traverso, JJ, Murali, N, Srinivas, K. Continuous fermentation of clarified corn stover hydrolysate for the production of lactic acid at high yield and productivity. Biochem Eng J 2016;109:162–9. https://doi.org/10.1016/j.bej.2016.01.012.Suche in Google Scholar

31. Hu, JL, Lin, YX, Zhang, ZT, Xiang, T, Mei, YX, Zhao, SM, et al.. High-titer lactic acid production by Lactobacillus pentosus FL0421 from corn stover using fed-batch simultaneous saccharification and fermentation. Bioresource Technol 2016;214:74–80. https://doi.org/10.1016/j.biortech.2016.04.034.Suche in Google Scholar PubMed

32. Jianxiong, Y, Yuxian, C, Guanxuan, P, Xinwei, Y, Jianzhong, H, Chongrong, K. Antibacterial activity of phenyllactic acid against Staphylococcus epidermidis and its microbial production: modelling and optimization-based analysis. Int J Chem React Eng 2020;18:20190106.Suche in Google Scholar

33. Ricardo, A-L, Mata-Machuca, J, Martinez-Guerra, R, López-Pérez, PA. Uniformly bounded error estimator for bioprocess with unstructured cell growth models. Chem Prod Process Model 2009;4:1–15. https://doi.org/10.2202/1934-2659.1401.Suche in Google Scholar

34. Biazar, J, Tango, M, Babolian, E, Islam, R. Solution of the kinetic modeling of lactic acid fermentation using Adomian decomposition method. Appl Math Comput 2003;144:433–9. https://doi.org/10.1016/s0096-3003(02)00418-6.Suche in Google Scholar

35. Ghimire, A, Kumar Sah, A, Poudel, R. Kinetics and modeling of growth and lactic acid production in Gundruk, a Himalayan fermented vegetable dish. Food Sci Nutr 2020;18:5591–600. https://doi.org/10.1002/fsn3.1854.Suche in Google Scholar PubMed PubMed Central

36. Isidori, A, Lamnabhi-Lagarrigue, F, Respondek, W. Nonlinear control in the year 2000. Springer Verlag LNCIS. 2001, vol I–II:258 p.10.1007/BFb0110202Suche in Google Scholar

37. Khalil, HK. Nonlinear systems, 3rd ed. Berlin/Boston: Prentice Hall; 2002.Suche in Google Scholar

38. Wahab, A, Khairi, A, Mohamed Azlan, H, Rosli, O. An artificial intelligence software-based controller for temperature control of a partially simulated chemical reactor system. Chem Prod Process Model 2008;3:53. https://doi.org/10.2202/1934-2659.1214.Suche in Google Scholar

39. Petre, E, Selişteanu, D, Popescu, D, Şendrescu, D, Roman, M. An adaptive control scheme for a lactic acid production process with unknown inputs. In: 2018 22nd International Conference on System Theory, Control and Computing (ICSTCC). IEEE: Sinaia, Romania; 2018:379–84 pp. https://doi.org/10.1109/ICSTCC.2018.8540744.Suche in Google Scholar

40. Utkin, V. Variable structure systems with sliding modes. IEEE Trans Automat Contr 1977;22:212–22. https://doi.org/10.1109/tac.1977.1101446.Suche in Google Scholar

41. Aguilar-López, R, Soto-Cortés, G, Neria-González, MI. Monitoreo en Linea de un Bioreactor Continúo Empleando Observadores de Modo Deslizante. Rev Mex Ing Quím 2006;5:1–4.Suche in Google Scholar

42. López Pérez, PA, Maya Yescas, R, Gomez Acata, RV, Peña Caballero, V, Aguilar López, R. Software sensors design for the simultaneous saccharification and fermentation of starch to ethanol. Fuel 2013;110:219–26. https://doi.org/10.1016/j.fuel.2012.11.020.Suche in Google Scholar

43. Hernández-Melchor, DJ, Camacho-Pérez, B, Ríos-Leal, E, Alarcón-Bonilla, J, López-Pérez, PA. Modelling and multi-objective optimization for simulation of hydrogen production using a photosynthetic consortium. Int J Chem React Eng 2020;18:20200019. https://doi.org/10.1515/ijcre-2020-0019.Suche in Google Scholar

44. Gómez-Acata, RV, Neria-Gonzalez, MI, Aguilar-Lopez, R. Robust software sensor design for state estimation sulfate-reducing bioreactor. Theor Found Chem Eng 2016;50:67–75. https://doi.org/10.1134/s0040579516010036.Suche in Google Scholar

45. Lopez Pérez, PA, Aguilar-Lopez, R, Castillo-Baltazar, OS, Vallejo Castaneda, E, Pena Caballero, V. Virtual sensors for bio-fuels production: a brief mathematical description for synthesis of algorithms. Comptes Rendus de l ’Academie Bulg des Sci 2019;71:1383–92.10.7546/CRABS.2019.10.11Suche in Google Scholar

46. Aguilar-López, R, Neria-González, MI, Martínez-Guerra, R, Mata-Machuca, JL. Nonlinear estimation in a class of gene transcription process. Appl Math Comput 2014;226:131–44. https://doi.org/10.1016/j.amc.2013.10.012.Suche in Google Scholar

47. Pohlscheidt, M, Charaniya, S, Bork, C, Jenzsch, M, Noetzel, TL, Luebbrert, A. Bioprocess and fermentation monitoring. In: Flickinger, MC, editor. Upstream industrial biotechnology: equipment, process design, sensing, control, and cGMP operations, 1st ed. Hoboken, NJ: John Wiley & Sons, Inc; 2013:1469–92 pp.10.1002/9780470054581.eib606.pub2Suche in Google Scholar

48. Schuler, M, Marison, I. Real-time monitoring control of microbial bioprocesses with focus on the specific growth rate: current state and perspectives. Appl Microbiol Biot 2012;94:1469–82. https://doi.org/10.1007/s00253-012-4095-z.Suche in Google Scholar PubMed

49. Tothill, IE, Newman, JD, White, SF, Turner, APF. Monitoring of the glucose concentration during microbial fermentation using a novel mass-producible biosensor suitable for on-line use. Enzyme Microb Technol 1997;20:590–6. https://doi.org/10.1016/s0141-0229(96)00200-1.Suche in Google Scholar

50. Pontius, K, Semenova, D, Silina, YE, KV Junicke, G. Automated electrochemical glucose biosensor platform as an efficient tool toward on-line fermentation monitoring: novel application approaches and insights. Front Bioeng Biotechnol 2020;8:436. https://doi.org/10.3389/fbioe.2020.00436.Suche in Google Scholar PubMed PubMed Central

51. Kanso, H, Gonz, B, Ma, S, Ludwig, R, Bolado, F. Dual biosensor for simultaneous monitoring of lactate and glucose based on thin-layer flow cell screen-printed electrode. Electroanalysis 2017;29:87–92. https://doi.org/10.1002/elan.201600487.Suche in Google Scholar

52. Grigs, O, Bolmanis, E, Galvanauskas, V. Application of in-situ and soft-sensors for estimation of recombinant P. Pastoris GS115 biomass concentration: a case analysis of HBcAg (Mut+) and HBsAg (MutS) production processes under varying conditions. Sensors (Basel, Switzerland) 2021;21:1268. https://doi.org/10.3390/s21041268.Suche in Google Scholar PubMed PubMed Central

53. Türker, M. Development of biocalorimetry as a technique for process monitoring and control in technical scale fermentations. Thermochim Acta 2004;419:73–81. https://doi.org/10.1016/j.tca.2004.01.036.Suche in Google Scholar

54. Cubas-Cano, E, González-Fernández, C, Tomás-Pejó, E. Evolutionary engineering of Lactobacillus pentosus improves lactic acid productivity from xylose-rich media at low pH. Bioresource Technol 2019;288:121540. https://doi.org/10.1016/j.biortech.2019.121540.Suche in Google Scholar PubMed

Received: 2021-12-20
Accepted: 2022-12-03
Published Online: 2022-12-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/cppm-2021-0074/pdf
Button zum nach oben scrollen