Startseite Density of lithium fluoride–lithium carbonate-based molten salts
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Density of lithium fluoride–lithium carbonate-based molten salts

  • Xiao-Wen Song , Wen-Tao Deng , Zheng-Hao Liu , Zhong-Ning Shi EMAIL logo , Bing-Liang Gao , Xian-Wei Hu und Zhao-Wen Wang
Veröffentlicht/Copyright: 15. Mai 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The density of the LiF-Li2CO3 melts system was measured using the Archimedean method. Using the quadratic regression orthogonal design with two factors, a regression equation for the density of LiF-Li2CO3 melts was obtained in which the concentration of LiF and temperature were considered. The results indicated that the density of the LiF-Li2CO3 melts decreased with either increasing the concentration of LiF or increasing temperature; a linear relation was observed between density and temperature. In addition, the influences of NaF, KF, NaCl, and KCl additives on the densities of the given systems were studied. The addition of NaF and KF increased the density of the melts, whereas NaCl and KCl resulted in an initial increase and subsequent decrease with an increasing additive concentration. The density attained a maximum at NaCl and KCl mass fraction of approximately 15 %.

References

Bearne, G., Dupuis, M., & Tarcy, G. (1995). Liquidus temperature and alumina solubility in the system Na3AlF6-AlF3 - LiF-CaF2-MgF2. In A. Solheim, S. Rolseth, E. Skybakmoen, L. Stoen, Å. Sterten, & T. Store (Eds.), Essential readings in light metals: Aluminum reduction technology (Vol. 2, pp.73-82). DOI: 10.1002/9781118647851.ch10.10.1002/9781118647851.ch10Suche in Google Scholar

Chrenkova, M., Daněk, V., & Silny, A. (2000). Density of the system LiF-KF-K2NbF7. Chemical Papers, 54, 272-276.Suche in Google Scholar

Chrenkova, M., Boča, M., Kucharik, M., & Daněk, V. (2002). Density of melts of the system KF-K2MoO4-SiO2. Chemical Papers, 56, 283-287.Suche in Google Scholar

Claes, P., Moyaux, D., & Peeters, D. (1999). Solubility and solvation of carbon dDioxide in the molten Li2CO3/Na2CO3/K2CO3 (43.5:31.5:25.0 mol-%) eutectic mixture at 973 K I.Suche in Google Scholar

Experimental part. European Journal of Inorganic Chemistry, 1999, 583-588. DOI: 10.1002/(SICI)1099-0682(199904)1999:4<583::AID-EJIC583>3.0.CO;2-Y.10.1002/(SICI)1099-0682(199904)1999:4<583::AID-EJIC583>3.0.CO;2-YSuche in Google Scholar

Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2002). Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.). Mahwah, NJ, USA: Lawrence Erlbaum Associates.Suche in Google Scholar

Daněk, V. (2006). Physico-chemical analysis of molten electrolytes. Amsterdam, The Netherlands: Elsevier.Suche in Google Scholar

Deanhardt, M. L., Stern, K. H., & Kende, A. (1986). Thermal decomposition and reduction of carbonate ion in fluoride melts. Journal of the Electrochemical Society, 133, 1148-1152. DOI: 10.1149/1.2108802.10.1149/1.2108802Suche in Google Scholar

Ijije, H. V., Lawrence, R. C., Siambun, N. J., Jeong, S. M., Jewell, D. A., Hu, D., & Chen, G. Z. (2014a). Electro-deposition and re-oxidation of carbon in carbonate containing molten salts. Faraday Discussions, 172, 105-116. DOI: 10.1039/c4fd00046c.10.1039/C4FD00046CSuche in Google Scholar

Ijije, H. V., Sun, C. G., & Chen, G. Z. (2014b). Indirect electrochemical reduction of carbon dioxide to carbon nanopowders in molten alkali carbonates: Process variables and product properties. Carbon, 73, 163-174. DOI: 10.1016/j.carbon.2014.02.052.10.1016/j.carbon.2014.02.052Suche in Google Scholar

Ingram, M. D., Baron, B., & Janz, G. J. (1966). The electrolytic deposition of carbon from fused carbonates. Electrochimica Acta, 11, 1629-1639. DOI: 10.1016/0013-4686(66)80076-2.10.1016/0013-4686(66)80076-2Suche in Google Scholar

Kawamura, H., & Ito, Y. (2000). Electrodeposition of cohesive carbon films on aluminum in LiCl-KCl-K2CO3 melt. Journal of Applied Electrochemistry, 30, 571-574. DOI: 10.1023/a:1003927100308.10.1023/A:1003927100308Suche in Google Scholar

Kirshenbaum, A. D., Cahill, J. A., McGonigal, P. J., & Grosse, A. V. (1962). The density of liquid NaCl and KCl and an estimate of their critical constants together with those of the other alkali halides. Journal of Inorganic and Nuclear Chemistry, 24, 1287-1296. DOI: 10.1016/0022-1902(62)80205-x.10.1016/0022-1902(62)80205-XSuche in Google Scholar

Kojima, T., Miyazaki, Y., Nomura, K., & Tanimoto, K. (2008). Density, surface tension, and electrical conductivity of ternary molten carbonate system Li2CO3-Na2CO3-K2CO3 and methods for their estimation. Journal of the Electrochemical Society, 155, F150-F156. DOI: 10.1149/1.2917212.10.1149/1.2917212Suche in Google Scholar

Lawrence, R. C. (2013). Carbon from carbon dioxide via molten carbonate electrolysis: Fundamental investigations. PhD Thesis, The University of Nottingham, Nottingham, UK.Suche in Google Scholar

Massot, L., Chamelot, P., Bouyer, F., & Taxil, P. (2002). Electrodeposition of carbon films from molten alkaline fluoride media. Electrochimica Acta, 47, 1949-1957. DOI: 10.1016/s0013-4686(02)00047-6.10.1016/S0013-4686(02)00047-6Suche in Google Scholar

Silny, A. (1990). Equipment for density measurements of liquids. Advising Technics (Sdělovaci Technika), 38, 101-103.Suche in Google Scholar

Song, Q. S., Xu, Q., Wang, Y., Shang, X. J., & Li, Z. Y. (2012). Electrochemical deposition of carbon films on titanium in molten LiCl-KCl-K2CO3. Thin Solid Films, 520, 6856-6863. DOI: 10.1016/j.tsf.2012.07.056.10.1016/j.tsf.2012.07.056Suche in Google Scholar

Van Artsdalen, E. R., & Yaffe, I. S. (1955). Electrical conductance and density of molten salt systems: KCl-LiCl, KCl-NaCl and KCl-KI. The Journal of Physical Chemistry, 59, 118-127. DOI: 10.1021/j150524a007.10.1021/j150524a007Suche in Google Scholar

Yin, H. Y., Mao, X. H., Tang, D. Y., Xiao, W., Xing, L. R., Zhu, H.,Wang, D. H., & Sadoway, D. R. (2013). Capture and electrochemical conversion of CO2 to value-added carbon and oxygen by molten salt electrolysis. Energy & Environmental Science, 6, 1538-1545. DOI: 10.1039/c3ee24132g. 10.1039/c3ee24132gSuche in Google Scholar

Received: 2014-10-30
Revised: 2015-1-19
Accepted: 2015-1-20
Published Online: 2015-5-15
Published in Print: 2015-8-1

© Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Deferoxamine–paper for iron(III) and vanadium(V) sensing
  2. Integrated investigations for the characterisation of Roman lead-glazed pottery from Pompeii and Herculaneum (Italy)
  3. Determination of acetylcholinesterase and butyrylcholinesterase activity without dilution of biological samples
  4. Characterization of a novel Aspergillus niger beta-glucosidase tolerant to saccharification of lignocellulosic biomass products and fermentation inhibitors
  5. Immobilisation of tyrosinase on siliceous cellular foams affording highly effective and stable biocatalysts
  6. Displacement washing of soda rapeseed pulp
  7. Hydrovisbreaking of vacuum residue from Russian Export Blend: influence of brown coal, light cycle oil, or naphtha addition
  8. Antimicrobial properties and chemical composition of liquid and gaseous phases of essential oils
  9. Syntheses, structures and properties of isonicotinamidium, thionicotinamidium, 2- and 3-(hydroxymethyl)pyridinium nitrates
  10. Density of lithium fluoride–lithium carbonate-based molten salts
  11. Synthesis and antimicrobial activity of sulphamethoxazole-based ureas and imidazolidine-2,4,5-triones
  12. Synthesis, biological evaluation, quantitative-SAR and docking studies of novel chalcone derivatives as antibacterial and antioxidant agents
  13. Application of polypyrrole nanowires for the development of a tyrosinase biosensor
  14. Synthesis of a sialic acid derivative of ristocetin aglycone as an inhibitor of influenza virus
  15. Erratum to “Ľubomír Vančo, Magdaléna Kadlečíková, Juraj Breza, Pavol Michniak, Michal Čeppan, Milena Reháková, Eva Belányiová, Beata Butvinová: Differentiation of selected blue writing inks by surface-enhanced Raman spectroscopy”, Chemical Papers 69 (4) 518–526 (2015)
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0108/html
Button zum nach oben scrollen