Home Synthesis and antimicrobial activity of sulphamethoxazole-based ureas and imidazolidine-2,4,5-triones
Article
Licensed
Unlicensed Requires Authentication

Synthesis and antimicrobial activity of sulphamethoxazole-based ureas and imidazolidine-2,4,5-triones

  • Martin Krátký EMAIL logo , Jana Mandíková , František Trejtnar , Vladimír Buchta , Jiřina Stolaříková and Jarmila Vinšová
Published/Copyright: May 15, 2015
Become an author with De Gruyter Brill

Abstract

Progression of drug resistance among bacterial and fungal pathogens justifies the development of novel antimicrobial agents. Thus, a series of novel sulphamethoxazole-based ureas and imidazolidine- 2,4,5-triones have been designed and synthesised. The urea derivatives were obtained by the reaction of sulphamethoxazole and isocyanates, and their cyclisation to imidazolidine-2,4,5-triones was performed via oxalyl chloride. All synthesised derivatives were evaluated in vitro to determine their activity against gram-positive and gram-negative bacteria, fungi, Mycobacterium tuberculosis, and atypical mycobacteria and their cytotoxicity. The growth of mycobacteria was inhibited within the range of 4-1000 μM and M. tuberculosis was the least-susceptible strain. 4-(3-Heptylureido)- N-(5-methylisoxazol-3-yl)benzenesulphonamide was identified as the most promising compound because it exhibited the highest activity against atypical mycobacteria at minimum inhibitory concentrations, from 4 μM, and with acceptable toxicity (selectivity indices for M. avium and M. kansasii higher than 16 and 62.5, respectively). Gram-positive bacteria, including methicillinresistant Staphylococcus aureus, were inhibited at concentrations starting from 125 μM, whereas the investigated derivatives exhibited almost no antifungal potency and activity against gram-negative species.

References

Agertt, V. A., Marques, L. L., Bonez, P. C., Dalmolin, T. V., Manzoni de Oliveira, G. N., & Anraku de Campos, M. M. (2013). Evaluation of antimycobacterial activity of a sulphonamide derivative. Tuberculosis, 93, 318-321. DOI: 10.1016/j.tube.2013.02.003.10.1016/j.tube.2013.02.003Search in Google Scholar PubMed

Akgün, H., Karamelekoğlu, I., Berk, B., Kurnaz, I., Sarıbıyık, G., Öktem, S., & Kocagöz, T. (2012). Synthesis and antimycobacterial activity of some phthalimide derivatives. Bioorganic & Medicinal Chemistry, 20, 4149-4154. DOI: 10.1016/j.bmc.2012.04.060.10.1016/j.bmc.2012.04.060Search in Google Scholar PubMed

Alsaad, N., van der Laan, T., van Altena, R.,Wilting, K. R., van der Werf, T. S., Stienstra, Y., van Soolingen, D., & Alffenaar, J. W. C. (2013). Trimethoprim/sulfamethoxazole susceptibility of Mycobacterium tuberculosis. International Journal of Antimicrobial Agents, 42, 472-474. DOI: 10.1016/j.ijantimicag.2013.07.011.10.1016/j.ijantimicag.2013.07.011Search in Google Scholar PubMed

Ameen, S. M., & Drancourt, M. (2013). In vitro susceptibility of Mycobacterium avium complex mycobacteria to trimethoprim and sulphonamides. International Journal of Antimicrobial Agents, 42, 281-282. DOI: 10.1016/j.ijantimicag.2013.05.006.10.1016/j.ijantimicag.2013.05.006Search in Google Scholar PubMed

Brown, J. R., North, E. J., Hurdle, J. G., Morisseau, C., Scarborough, J. S., Sun, D., Kordulakova, J., Scherman, M. S., Jones, V., Grzegorzewicz, A., Crew, R. M., Jackson, M., Mc-Neil, M. R., & Lee, R. E. (2011). The structure-activity relationship of urea derivatives as anti-tuberculosis agents. Bioorganic & Medicinal Chemistry, 19, 5585-5595. DOI: 10.1016/j.bmc.2011.07.034.10.1016/j.bmc.2011.07.034Search in Google Scholar PubMed PubMed Central

Desai, S. R., Laddi, U., Bennur, R. S., Patil, P. A., & Bennur, S. (2011). Synthesis and pharmacological activities of some new 5-substituted-2-mercapto-1,3,4-oxadiazoles. Indian Journal of Pharmaceutical Sciences, 73, 593-596. DOI: 10.4103/0250-474x.99025.10.4103/0250-474X.99025Search in Google Scholar PubMed PubMed Central

Huang, T. S., Kunin,C.M., Yan, B. S.,Chen, Y. S., Lee, S. S. J., & Syu, W. J. (2012). Susceptibility of Mycobacterium tuberculosis to sulfamethoxazole, trimethoprim and their combination over a 12 year period in Taiwan. Journal of Antimicrobial Chemotherapy, 67, 633-637. DOI: 10.1093/jac/dkr501.10.1093/jac/dkr501Search in Google Scholar PubMed

Kratky, M., & Vinšova, J. (2012). Antifungal activity of salicylanilides and their esters with 4-(trifluoromethyl)benzoic acid. Molecules, 17, 9426-9442. DOI: 10.3390/molecules17089426.10.3390/molecules17089426Search in Google Scholar PubMed PubMed Central

Kratky, M., Vinšova, J., Volkova, M., Buchta, V., Trejtnar, F., & Stolařikova, J. (2012). Antimicrobial activity of sulfonamides containing 5-chloro-2-hydroxybenzaldehyde and 5-chloro-2-hydroxybenzoic acid scaffold. European Journal of Medicinal Chemistry, 50, 433-440. DOI: 10.1016/j.ejmech.2012.01.060.10.1016/j.ejmech.2012.01.060Search in Google Scholar PubMed

Kratky, M., Vinšova, J., Novotna, E., Mandikova, J., Trejtnar, F., & Stolařikova, J. (2013). Antibacterial activity of salicylanilide 4-(trifluoromethyl)benzoates. Molecules, 18, 3674-3688. DOI: 10.3390/molecules18043674.10.3390/molecules18043674Search in Google Scholar PubMed PubMed Central

Maresca, A., Scozzafava, A., Vullo, D., & Supuran, C. T. (2013). Dihalogenated sulfanilamides and benzolamides are effective inhibitors of the three β-class carbonic anhydrases from Mycobacterium tuberculosis. Journal of Enzyme Inhibition and Medicinal Chemistry, 28, 384-387. DOI: 10.3109/14756366.2011.645539.10.3109/14756366.2011.645539Search in Google Scholar PubMed

Minakuchi, T., Nishimori, I., Vullo, D., Scozzafava, A., & Supuran, C. T. (2009). Molecular cloning, characterization, and inhibition studies of the Rv1284 β-carbonic anhydrase from Mycobacterium tuberculosis with sulfonamides and a sulfamate. Journal of Medicinal Chemistry, 52, 2226-2232. DOI: 10.1021/jm9000488.10.1021/jm9000488Search in Google Scholar PubMed

North, E. J., Scherman, M. S., Bruhn, D. F., Scarborough, J. S., Maddox, M. M., Jones, V., Grzegorzewicz, A., Yang, L., Hess, T., Morisseau, C., Jackson, M., McNeil, M. R., & Lee, R. E. (2013). Design, synthesis and anti-tuberculosis activity of 1-adamantyl-3-heteroaryl ureas with improved in vitro pharmacokinetic properties. Bioorganic & Medicinal Chemistry, 21, 2587-2599. DOI: 10.1016/j.bmc.2013.02.028.10.1016/j.bmc.2013.02.028Search in Google Scholar PubMed PubMed Central

Pejchal, V., Stepankova, S., Padelkova, Z., Imramovsky, A., & Jampilek, J. (2011). 1,3-Substituted imidazolidine-2,4,5-triones: Synthesis and inhibition of cholinergic enzymes. Molecules, 16, 7565-7582. DOI: 10.3390/molecules16097565.10.3390/molecules16097565Search in Google Scholar PubMed PubMed Central

Sukdolak, S., Solujić, S., Manojlović, N., & Krstić, L. J. (2005). Synthesis and antimicrobial activity of new N-[4-(4-hydroxy- 2-oxo-2H-chromen-3-yl)thiazol-2-yl]benzenesulfonamides. Chemical Papers, 59, 37-40.Search in Google Scholar

Thomas, K. D., Adhikari, A. V., Chowdhury, I. H., Sumesh, E., & Pal, N. K. (2011). New quinolin-4-yl-1,2,3-triazoles carrying amides, sulphonamides and amidopiperazines as potential antitubercular agents. European Journal of Medicinal Chemistry, 46, 2503-2512. DOI: 10.1016/j.ejmech.2011.03.039.10.1016/j.ejmech.2011.03.039Search in Google Scholar PubMed

Yun, M. K., Wu, Y., Li, Z., Zhao, Y., Waddell, M. B., Ferreira, A. M., Lee, R. E., Bashford, D., & White, S. W. (2012). Catalysis and sulfa drug resistance in dihydropteroate synthase. Science, 335, 1110-1114. DOI: 10.1126/science.1214641. 10.1126/science.1214641Search in Google Scholar PubMed PubMed Central

Received: 2014-12-26
Revised: 2015-2-1
Accepted: 2015-2-7
Published Online: 2015-5-15
Published in Print: 2015-8-1

© Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Deferoxamine–paper for iron(III) and vanadium(V) sensing
  2. Integrated investigations for the characterisation of Roman lead-glazed pottery from Pompeii and Herculaneum (Italy)
  3. Determination of acetylcholinesterase and butyrylcholinesterase activity without dilution of biological samples
  4. Characterization of a novel Aspergillus niger beta-glucosidase tolerant to saccharification of lignocellulosic biomass products and fermentation inhibitors
  5. Immobilisation of tyrosinase on siliceous cellular foams affording highly effective and stable biocatalysts
  6. Displacement washing of soda rapeseed pulp
  7. Hydrovisbreaking of vacuum residue from Russian Export Blend: influence of brown coal, light cycle oil, or naphtha addition
  8. Antimicrobial properties and chemical composition of liquid and gaseous phases of essential oils
  9. Syntheses, structures and properties of isonicotinamidium, thionicotinamidium, 2- and 3-(hydroxymethyl)pyridinium nitrates
  10. Density of lithium fluoride–lithium carbonate-based molten salts
  11. Synthesis and antimicrobial activity of sulphamethoxazole-based ureas and imidazolidine-2,4,5-triones
  12. Synthesis, biological evaluation, quantitative-SAR and docking studies of novel chalcone derivatives as antibacterial and antioxidant agents
  13. Application of polypyrrole nanowires for the development of a tyrosinase biosensor
  14. Synthesis of a sialic acid derivative of ristocetin aglycone as an inhibitor of influenza virus
  15. Erratum to “Ľubomír Vančo, Magdaléna Kadlečíková, Juraj Breza, Pavol Michniak, Michal Čeppan, Milena Reháková, Eva Belányiová, Beata Butvinová: Differentiation of selected blue writing inks by surface-enhanced Raman spectroscopy”, Chemical Papers 69 (4) 518–526 (2015)
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0109/html
Scroll to top button