Home Integrated investigations for the characterisation of Roman lead-glazed pottery from Pompeii and Herculaneum (Italy)
Article
Licensed
Unlicensed Requires Authentication

Integrated investigations for the characterisation of Roman lead-glazed pottery from Pompeii and Herculaneum (Italy)

  • Lorena Carla Giannossa , Daniela Fico EMAIL logo , Antonio Pennetta , Annarosa Mangone , Rocco Laviano and Giuseppe Egidio De Benedetto
Published/Copyright: May 15, 2015
Become an author with De Gruyter Brill

Abstract

A multi-analytical approach was used to investigate Roman lead-glazed ceramic artefacts from archaeological excavations at Pompeii and Herculaneum (Italy) aiming at defining the production technology of both glaze and ceramic body, by way of integrated investigations. The chemical, structural, and micro-morphological characterisations were performed using a combination of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), optical microscopy (OM), scanning electron microscopy (SEM), and micro-Raman spectroscopy. Fragments of artefacts (skyphoi, oil lamps, bowls, askoi, amphorae, krateres) of great historical and archaeological interest were sampled. LA-ICP-MS was used to determine the elemental composition by virtue of its effective lateral resolution, its ability to detect most elements and also to analyse comparably small samples. All the archaeological objects were coated with a lead-based glaze produced using a lead oxide-plus-quartz mixture, with sodium/potassium feldspars added as a flux and two different metals used: copper and iron. Two types of ceramic pastes have been identified, but chemometric techniques support the hypothesis of a Campanian provenance for the raw materials. Degradation phenomena such as the partial devitrification of the glaze, i.e. the slow structural reorganisation towards stable crystalline phases, and the leaching by mineral dissolution in the soil, were determined.

References

Arthur, P. (1979). An Italian flagon from Roman Colchester. The Antiquaries Journal, 59, 392-397. DOI: 10.1017/s0003581500079786.10.1017/S0003581500079786Search in Google Scholar

Burgio, L., & Clark, R. J. H. (2001). Library of FT-Raman spectra of pigments, minerals, pigment media and vernishes, and supplement to existing library of Raman spectra of pigments with visible excitation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 57, 1491-1521. DOI: 10.1016/s1386-1425(00)00495-9.10.1016/S1386-1425(00)00495-9Search in Google Scholar

Cochrane, E. E., & Neff, H. (2006). Investigating compositional diversity among Fijian ceramics with laser ablationinductively coupled plasma-mass spectrometry (LA-ICPMS): implications for interaction studies on geologically similar islands. Journal of Archaeological Science, 33, 378-390. DOI: 10.1016/j.jas.2005.08.003.10.1016/j.jas.2005.08.003Search in Google Scholar

Colomban, P., Sagon, G., & Faurel, X. (2001). Differentiation of antique ceramics from the Raman spectra of their coloured glazes and paintings. Journal of Raman Spectroscopy, 32, 351-360. DOI: 10.1002/jrs.704.10.1002/jrs.704Search in Google Scholar

Colomban, P., Milande, V., & Le Bihan, L. (2004). On-site Raman analysis of Iznik pottery glazes and pigments. Journal of Raman Spectroscopy, 35, 527-535. DOI: 10.1002/jrs.1163.10.1002/jrs.1163Search in Google Scholar

Colomban, P., Tournie, A., & Bellot-Gurlet, L. (2006). Raman identification of glassy silicates used in ceramics, glass and jewellery: a tentative differentiation guide. Journal of Raman Spectroscopy, 37, 841-852. DOI: 10.1002/jrs.1515.10.1002/jrs.1515Search in Google Scholar

De Benedetto, G. E., Acquafredda, P., Masieri, M., Quarta, G., Sabbatini, L., Zambonin, P. G., Tite, M., & Walton, M. (2004). Investigation on Roman lead glaze from Canosa: Results of chemical analyses. Archaeometry, 46, 615-624. DOI: 10.1111/j.1475-4754.2004.00177.x.10.1111/j.1475-4754.2004.00177.xSearch in Google Scholar

Desbat, A. (1986). Ceramiques romaines à gla,cure plombifère des fouilles de Lyon (Hauts-de-Saint-Just, Rue des Farges, La Solitude). Figlina, 7, 105-124. (in French) Desbat A. (1995). Les productions precoces de ceramiques à gla,cure plombifère de la vallee du Rhone. Rei Cretariae Romanae Fautores Acta, 34, 39-47. (in French) Di Gioia, E. (2006). La ceramica invetriata in area vesuviana. Studi della Soprintendenza Archeologica di Pompei. Roma, Italy: L’Erma di Bretschneider. (in Italian) Genin, D., Desbat, A., Elaigne, S., Laroche, C., & Dangreaux, B. (1996). Les productions de l’atelier de la Muette. Gallia, 53, 41-191. (in French) Giannossa, L. C., De Benedetto, G. E., Laviano, R., Pallara, M., & Mangone, A. (2012). Archaeometry in the Vesuvian area: Technological teatures of thin-walled ware. In D. Braekmans, J. Honings, & P. Degryse (Eds.), Proceedings of 39th International Symposium on Archaeometry: 50 years of ISA, May 28-June 1, 2012 (pp. 157-163). Leuven, Belgium: KU Leuven.Search in Google Scholar

Giannossa, L. C., Acquaviva, M., De Benedetto, G. E., Acquafredda, P., Laviano, R., & Mangone, A. (2014). Methodology of a combined approach: analytical techniques to identify technology and raw materials used in thin-walled pottery from Herculaneum and Pompeii. Analytical Methods, 6, 3490-3499. DOI: 10.1039/c3ay42195c.10.1039/C3AY42195CSearch in Google Scholar

Greene, K. (2007). Late Hellenistic and early Roman invention and innovation: The case of lead-glazed pottery. American Journal of Archaeology, 111, 653-671. DOI: 10.3764/aja.111.4.653.10.3764/aja.111.4.653Search in Google Scholar

Halicz, L., & Günther, D. (2004). Quantitative analysis of silicates using LA-ICP-MS with liquid calibration. Journal of Analytical Atomic Spectrometry, 19, 1539-1545. DOI: 10.1039/b410132d.10.1039/B410132DSearch in Google Scholar

Hatcher, H., Kaczmarczyk, A., Scherer, A., & Symonds, R. P. (1994). Chemical classification and provenance of some Roman glazed ceramics. American Journal of Archaeology, 98, 431-456. DOI: 10.2307/506438.10.2307/506438Search in Google Scholar

Heimann, R. B., & Maggetti, M. (1981). Experiments on simulated burial of calcareous Terra Sigillata (mineralogical change). Preliminary results. In M. J. Hughes (Ed.), Scientific studies in ancient ceramics (British Museum Occasional Paper 19, pp. 163-177). London, UK: British Museum.Search in Google Scholar

Hochuli-Gysel, A. (2002). La ceramique à gla,cure plombifère d’Asie Mineure et du bassin mediterraneen oriental (du 1er s. av. J.-C. au 1er s. ap. J.-C.). In F. Blonde, P. Ballet, & J. F. Salles (Eds.), Céramiques hellénistiques et romaines: Productions et diffusion en Méditerranée orientale (Chypre, Égypte et côte syro-palestinienne) (Actes du colloque à la Maison de l’Orient mediterraneen Jean Pouilloux, pp. 303-319). Lyon, France: Maison de l’Orient Mediterraneen. (in French) Hurst, D., & Freestone, I. (1996). Lead glazing technique from a medieval kiln site at Hanley Swan, Worcestershire. Medieval Ceramics, 20, 13-18.Search in Google Scholar

James, W. D., Dahlin, E. S., & Carlson, D. L. (2005). Chemical compositional studies of archaeological artifacts: Comparison of LA-ICP-MS to INAA measurements. Journal of Radioanalytical and Nuclear Chemistry, 263, 697-702. DOI: 10.1007/s10967-005-0645-5.10.1007/s10967-005-0645-5Search in Google Scholar

Liu, Y. S., Hu, Z. C., Gao, S., Günther, D., Xu, J. A., Gao, C. G., & Chen, H. H. (2008). In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257, 34-43. DOI: 10.1016/j.chemgeo.2008.08.004.10.1016/j.chemgeo.2008.08.004Search in Google Scholar

Maccabruni, C. (1987). Ceramica romana con invetriatura al piombo. In P. Lev˛eque, & J. P. Morel (Eds.), Cèramiques hellenistique et romaines (Annales scientifiques de l’Universite de Besan,con, pp. 167-182). Besancon, France: Universite de Besan,con. (in Italian) Maccabruni, C. (1994). Ceramica invetriata con decorazione a rilievo. Nuovi ritrovamenti dal territorio pavese. Rei Cretariae Romanae Fautores Acta, 34, 49-61. (in Italian) Mangone, A., Giannossa, L. C., Laviano, R., Fioriello, C. S., & Traini, A. (2009). Investigations by various analytical techniques to the correct classification of archaeological finds and delineation of technological features: Late Roman lamps from Egnatia: From imports to local production. Microchemical Journal, 91, 214-221. DOI:10.1016/j.microc.2008.11.006.10.1016/j.microc.2008.11.006Search in Google Scholar

Mangone, A., De Benedetto, G. E., Fico, D., Giannossa, L. C., Laviano, R., Sabbatini, L., van der Werf, I. D., & Traini, A. (2011a). A multianalytical study of archaeological faience from Vesuvian area as a valid tool to investigate provenance and technological features. New Journal of Chemistry, 35, 2860-2868. DOI: 10.1039/c1nj20626e.10.1039/c1nj20626eSearch in Google Scholar

Mangone, A., Giannossa, L. C., De Benedetto, G. E., Laviano, R., Traini, A., & Sabbatini, L. (2011b). Ceramica a pareti sottili da Ercolano: un’indagine archeometrica. In A. Coralini (Ed.), Vesuviana. Bologna, Italy: Antequem. (in Italian) Martin, A. (1992). La ceramica invetriata romana: la testimonianza dell’Area NE delle Terme del Nuotatore ad Ostia. In L. Paroli (Ed.), Proceedings of the Seminar at Certosa di Pontigliano, February 23-24, 1990 (pp. 323-329). Firenze, Italy. (in Italian) Molera, J., Pradell, T., Salvado, N., & Vendrell-Saz, M. (2001). Interaction between clay bodies and lead glazes. Journal of the American Ceramic Society, 84, 1120-1128. DOI: 10.1111/j.1151-2916.2001.tb00799.x.10.1111/j.1151-2916.2001.tb00799.xSearch in Google Scholar

Perez-Arantegui, J., Urũnuela, M. I., & Castillo, J. R. (1996). Roman glazed ceramics in the Western Mediterranean: Chemical characterization by inductively coupled plasma atomic emission spectrometry of ceramic bodies. Journal of Archaeological Science, 23, 903-914. DOI: 10.1006/jasc.1996.0085.10.1006/jasc.1996.0085Search in Google Scholar

Picon, M., & Vichy, M. (1974). Recherches sur la composition des ceramiques de Lyon. Revue Archéologique de l’Est et du Centre-Est Consacrée aux Antiquités Nationales, 25(1), 37-59. (in French) Picon, M., & Desbat, A. (1986). Note sur l’origine des ceramiques à gla,cure plombifère, generalement bicolore, des IIème et IIIème siècles, de Vienne et Saint-Romain-en-Gal, Figlina, 7, 125-127. (in French) Resano, M., Perez-Arantegui, J., Garcia-Ruiz, E., & Vanhaecke, F. (2005). Laser ablation-inductively coupled plasma mass spectrometry for the fast and direct characterization of antique glazed ceramics. Journal of Analytical Atomic Spectrometry, 20, 508-514. DOI: 10.1039/b500691k.10.1039/b500691kSearch in Google Scholar

Šelih, V. S., & van Elteren, J. T. (2011). Quantitative multielement mapping of ancient glass using a simple and robust LA-ICP-MS rastering procedure in combination with image analysis. Analytical & Bioanalytical Chemistry, 401, 745-755. DOI: 10.1007/s00216-011-5119-8.10.1007/s00216-011-5119-8Search in Google Scholar PubMed

Soricelli, G. (1988). Osservazioni intorno ad un cratere in ceramic invetriata da Pompei. Rivista di Studi Pompeiani, 1988(II), 248-254. (in Italian) Stoner, W. D., & Glascock, M. D. (2012). The forest or the trees? Behavioral and methodological considerations for geochemical characterization of heavily-tempered ceramic pastes using NAA and LA-ICP-MS. Journal of Archaeological Science, 39, 2668-2683. DOI: 10.1016/j.jas.2012.04.011. van Elteren, J. T., Tennent, N. H., & Šelih, V. S. (2009). Multielement quantification of ancient/historic glasses by laser ablation inductively coupled plasma mass spectrometry using sum normalization calibration. Analytica Chimica Acta, 644, 1-9. DOI: 10.1016/j.aca.2009.04.025.10.1016/j.aca.2009.04.025Search in Google Scholar PubMed

Walton, M. S., & Tite, M. S. (2010). Production technology of Roman lead-glazed pottery and its continuance into late antiquity. Archaeometry, 52, 733-759. DOI: 10.1111/j.1475-4754.2009.00506.x.10.1111/j.1475-4754.2009.00506.xSearch in Google Scholar

Ziviello, V. (1989). Le terrecotte invetriate. In L. De Luca (Ed.), Le collezioni del Museo Nazionale di Napoli (pp. 204). Roma, Italy: Archivio fotografico Pedicini. (in Italian) Search in Google Scholar

Received: 2014-10-24
Revised: 2015-1-12
Accepted: 2015-2-3
Published Online: 2015-5-15
Published in Print: 2015-8-1

© Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Deferoxamine–paper for iron(III) and vanadium(V) sensing
  2. Integrated investigations for the characterisation of Roman lead-glazed pottery from Pompeii and Herculaneum (Italy)
  3. Determination of acetylcholinesterase and butyrylcholinesterase activity without dilution of biological samples
  4. Characterization of a novel Aspergillus niger beta-glucosidase tolerant to saccharification of lignocellulosic biomass products and fermentation inhibitors
  5. Immobilisation of tyrosinase on siliceous cellular foams affording highly effective and stable biocatalysts
  6. Displacement washing of soda rapeseed pulp
  7. Hydrovisbreaking of vacuum residue from Russian Export Blend: influence of brown coal, light cycle oil, or naphtha addition
  8. Antimicrobial properties and chemical composition of liquid and gaseous phases of essential oils
  9. Syntheses, structures and properties of isonicotinamidium, thionicotinamidium, 2- and 3-(hydroxymethyl)pyridinium nitrates
  10. Density of lithium fluoride–lithium carbonate-based molten salts
  11. Synthesis and antimicrobial activity of sulphamethoxazole-based ureas and imidazolidine-2,4,5-triones
  12. Synthesis, biological evaluation, quantitative-SAR and docking studies of novel chalcone derivatives as antibacterial and antioxidant agents
  13. Application of polypyrrole nanowires for the development of a tyrosinase biosensor
  14. Synthesis of a sialic acid derivative of ristocetin aglycone as an inhibitor of influenza virus
  15. Erratum to “Ľubomír Vančo, Magdaléna Kadlečíková, Juraj Breza, Pavol Michniak, Michal Čeppan, Milena Reháková, Eva Belányiová, Beata Butvinová: Differentiation of selected blue writing inks by surface-enhanced Raman spectroscopy”, Chemical Papers 69 (4) 518–526 (2015)
Downloaded on 18.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0110/html
Scroll to top button