Startseite In vivo evaluation of two adaptive Starling-like control algorithms for left ventricular assist devices
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

In vivo evaluation of two adaptive Starling-like control algorithms for left ventricular assist devices

  • Moriz A. Habigt ORCID logo EMAIL logo , Jonas Gesenhues , Maike Ketelhut , Marc Hein , Patrick Duschner , Rolf Rossaint und Mare Mechelinck
Veröffentlicht/Copyright: 17. Dezember 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The implantation of a left ventricular assist device (LVAD) is often the only therapy in terminal heart failure (HF). However, despite technical advancements, the physical fitness of the patients is still limited. One strategy to improve the benefits of ventricular assist device therapy might be the implementation of load adaptive control strategies. Two control strategies and a constant speed controller (CS) were implemented in an acute animal model where four healthy pigs received LVAD implantations. In the first strategy (preload recruitable stroke work [SW] controller, PRS), the desired pump work was computed in relation to the end-diastolic volume. In the second strategy, the controller was programmed to keep a fixed ratio of the mean hydraulic power of the assist device to the mean hydraulic power of the left ventricle (power relation controller, PR). Preload reduction, afterload increase experiments and short-term coronary artery occlusions were conducted to test the behavior of the control strategies under variable conditions. Within the experiments, the PR controller demonstrated the best preload sensitivity. The PRS controller had the best response to an increased afterload and to a reduced ventricular contractility in terms of effectively preventing ventricular overloading and increasing VAD support. No significant differences in systemic flow were observed.


Corresponding author: Moriz A. Habigt, Anaesthesiology Clinic, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074Aachen, Germany, E-mail:

Funding source: German Research Foundation

Award Identifier / Grant number: 65/15-1 RO 2000/17-1

Funding source: Medizinische Fakultät, RWTH Aachen University

Acknowledgments

The funders had no influence on the study design, data collection and analysis, decision to publish or preparation of the manuscript.

  1. Research funding: This work was supported by the German Research Foundation (DFG) as project Smart Life Support 2.0 (65/15-1 RO 2000/17-1) and by the Medizinische Fakultät, RWTH Aachen University (START).

  2. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: All authors declare no conflicts of interest, financial or otherwise. The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

  4. Ethical approval: This study was reviewed and approved by the local animal care committee and the Government Animal Care Office (No. 84-02.04.2013. A476 and 8.87-50.10.45.08.257; Landesamt für Natur-, Umwelt- und Verbraucherschutz Nordrhein-Westfalen, Recklinghausen, Germany).

References

1. Savarese, G, Lund, LH. Global public health burden of heart failure. Card Fail Rev 2017;3:7–11. https://doi.org/10.15420/cfr.2016:25:2.10.15420/cfr.2016:25:2Suche in Google Scholar

2. Kirklin, JK, Naftel, DC, Pagani, FD, Kormos, RL, Stevenson, L, Miller, M, et al.. Long-term mechanical circulatory support (destination therapy): on track to compete with heart transplantation? J Thorac Cardiovasc Surg 2012;144:584–603; discussion 597–8. https://doi.org/10.1016/j.jtcvs.2012.05.044.Suche in Google Scholar

3. Mancini, D, Colombo, PC. Left ventricular assist devices. A rapidly evolving alternative to transplant. J Am Coll Cardiol 2015;65:2542–55. https://doi.org/10.1016/j.jacc.2015.04.039.Suche in Google Scholar

4. Han Jason, J, Acker Michael, A, Atluri, P. Left ventricular assist devices. Circulation 2018;138:2841–51. https://doi.org/10.1161/circulationaha.118.035566.Suche in Google Scholar

5. Wiegmann, L, Thamsen, B, de Zelicourt, D, Granegger, M, Boes, S, Schmid Daners, M, et al.. Fluid dynamics in the HeartMate 3: influence of the artificial pulse feature and residual cardiac pulsation. Artif Organs 2019;43:363–76. https://doi.org/10.1111/aor.13346.Suche in Google Scholar

6. Salamonsen, RF, Mason, DG, Ayre, PJ. Response of rotary blood pumps to changes in preload and afterload at a fixed speed setting are unphysiological when compared with the natural heart. Artif Organs 2011;35:E47–53. https://doi.org/10.1111/j.1525-1594.2010.01168.x.Suche in Google Scholar

7. Choi, S, Antaki, J, Boston, R, Thomas, D. A sensorless approach to control of a turbodynamic left ventricular assist system. IEEE Trans Contr Syst Technol 2001;9:473–82.10.1109/87.918900Suche in Google Scholar

8. Vollkron, M, Schima, H, Huber, L, Benkowski, R, Morello, G, Wieselthaler, G. Development of a reliable automatic speed control system for rotary blood pumps. J Heart Lung Transplant 2005;24:1878–85. https://doi.org/10.1016/j.healun.2005.02.004.Suche in Google Scholar

9. Schima, H, Vollkron, M, Jantsch, U, Crevenna, R, Roethy, W, Benkowski, R, et al.. First clinical experience with an automatic control system for rotary blood pumps during ergometry and right-heart catheterization. J Heart Lung Transplant 2006;25:167–73. https://doi.org/10.1016/j.healun.2005.09.008.Suche in Google Scholar

10. Gregory, SD, Stevens, MC, Pauls, JP, Schummy, E, Diab, S, Thomson, B, et al.. In vivo evaluation of active and passive physiological control systems for rotary left and right ventricular assist devices. Artif Organs 2016;40:894–903. https://doi.org/10.1111/aor.12654.Suche in Google Scholar

11. Ochsner, G, Wilhelm, MJ, Amacher, R, Petrou, A, Cesarovic, N, Staufert, S, et al.. In vivo evaluation of physiologic control algorithms for left ventricular assist devices based on left ventricular volume or pressure. Am Soc Artif Intern Organs J 2017;63:568–77. https://doi.org/10.1097/mat.0000000000000533.Suche in Google Scholar

12. Ochsner, G, Amacher, R, Wilhelm, MJ, Vandenberghe, S, Tevaearai, H, Plass, A, et al.. A physiological controller for turbodynamic ventricular assist devices based on a measurement of the left ventricular volume. Artif Organs 2014;38:527–38. https://doi.org/10.1111/aor.12225.Suche in Google Scholar

13. Habigt, M, Ketelhut, M, Gesenhues, J, Schrodel, F, Hein, M, Mechelinck, M, et al.. Comparison of novel physiological load-adaptive control strategies for ventricular assist devices. Biomed Tech 2017;62:149–60. doi:https://doi.org/10.1515/bmt-2016-0073.Suche in Google Scholar

14. Schrödel, F, Schindler, D, Claver, A, Hein, M, Abel, D. A physiological control strategy for continuous-flow left ventricular assist devices: the power relation controller. ECC 2016. https://doi.org/10.1109/ecc.2016.7810652.Suche in Google Scholar

15. National Research Council (US). Committee for the update of the guide for the care and use of laboratory animals. Guide for the care and use of laboratory animals, 8th ed. USA: National Academies Press; 2011.Suche in Google Scholar

16. Gesenhues, JF-H. Objektorientiert-modellbasierte Charakterisierung, Überwachung und Regelung des technisch unterstützen Herz-Kreislauf-Systems [dissertation/Ph.D. thesis]. Aachen: Rheinisch-Westfälische Technische Hochschule Aachen; 2019.Suche in Google Scholar

17. Gesenhues, J, Hein, M, Ketelhut, M, Habigt, M, Ruschen, D, Mechelinck, M, et al.. Benefits of object-oriented models and ModeliChart: modern tools and methods for the interdisciplinary research on smart biomedical technology. Biomed Tech 2017;62:111–21. https://doi.org/10.1515/bmt-2016-0074.Suche in Google Scholar

18. Baan, J, van der Velde, ET, de Bruin, HG, Smeenk, GJ, Koops, J, van Dijk, AD, et al.. Continuous measurement of left ventricular volume in animals and humans by conductance catheter. Circulation 1984;70:812–23. https://doi.org/10.1161/01.cir.70.5.812.Suche in Google Scholar

19. de Vroomen, M, Cardozo, RH, Steendijk, P, van Bel, F, Baan, J. Improved contractile performance of right ventricle in response to increased RV afterload in newborn lamb. Am J Physiol Heart Circ Physiol 2000;278:H100–5. https://doi.org/10.1152/ajpheart.2000.278.1.h100.Suche in Google Scholar

20. Steendijk, P, Baan, J. Comparison of intravenous and pulmonary artery injections of hypertonic saline for the assessment of conductance catheter parallel conductance. Cardiovasc Res 2000;46:82–9. https://doi.org/10.1016/s0008-6363(00)00012-2.Suche in Google Scholar

21. Ross, JJr. Mechanisms of cardiac contraction. What roles for preload, afterload and inotropic state in heart failure? Eur Heart J 1983;4(A Suppl):19–28. https://doi.org/10.1093/eurheartj/4.suppl_a.19.Suche in Google Scholar

22. Schwinger, RH, Bohm, M, Koch, A, Schmidt, U, Morano, I, Eissner, HJ, et al.. The failing human heart is unable to use the Frank-Starling mechanism. Circ Res 1994;74:959–69. https://doi.org/10.1161/01.res.74.5.959.Suche in Google Scholar

23. Capoccia, M. Mechanical circulatory support for advanced heart failure: are we about to witness a new “gold standard”? J Cardiovasc Dev Dis 2016;3. https://doi.org/10.3390/jcdd3040035.Suche in Google Scholar

24. Her, K, Ahn, CB, Park, SM, Choi, SW. Heart monitoring using left ventricle impedance and ventricular electrocardiography in left ventricular assist device patients. Biomed Eng Online 2015;14:25. https://doi.org/10.1186/s12938-015-0019-3.Suche in Google Scholar

25. Wei, X, Li, T, Hagen, B, Zhang, P, Sanchez, PG, Williams, K, et al.. Short-term mechanical unloading with left ventricular assist devices after acute myocardial infarction conserves calcium cycling and improves heart function. JACC Cardiovasc Interv 2013;6:406–15. https://doi.org/10.1016/j.jcin.2012.12.122.Suche in Google Scholar

Received: 2020-09-18
Accepted: 2020-11-01
Published Online: 2020-12-17
Published in Print: 2021-06-25

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 26.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/bmt-2020-0248/html
Button zum nach oben scrollen