Startseite Asymptotic analysis of a class of Ginzburg–Landau equations in thin multidomains
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Asymptotic analysis of a class of Ginzburg–Landau equations in thin multidomains

  • Abdellatif Messaoudi EMAIL logo
Veröffentlicht/Copyright: 11. August 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This paper addresses the asymptotic analysis of minimizers of the classical Ginzburg–Landau energy in a thin multidomain. More precisely we are interested in the minimization of the energy

En,ε(u)=12Ωn|u|2+14ε2Ωn(1-|u|2)2

over all maps u:Ωn, satisfying a partial boundary Dirichlet condition u=g on a specific subset of Ωn. Here Ωn2 is a thin bounded multidomain, and g:S1 is a given smooth map. The analysis is performed in the case where Ωn is made of a thin horizontal plate of vanishing thickness with a “forest” of vertical cylinders on the top of it of vanishing width as n. The main issue addressed here is to determine the behavior of minimizers as n and then ε0, and conversely.

MSC 2010: 35B27; 35Q56; 35B40

References

[1] André N. and Shafrir I., Minimization of a Ginzburg–Landau functional with weight, C. R. Acad. Sci. Paris Sér. I 321 (1995), 999–1004. Suche in Google Scholar

[2] Beaulieu A. and Hadiji R., Asymptotics for minimizers of a class of Ginzburg–Landau equations with weight, C. R. Acad. Sci. Paris Sér. I 320 (1995), 181–186. Suche in Google Scholar

[3] Bethuel F., Brezis H. and Hélein F., Asymptotics for the minimization of a Ginzburg–Landau functional, Calc. Var. Partial Differential Equations 1 (1993), 123–148. 10.1007/BF01191614Suche in Google Scholar

[4] Bethuel F., Brezis H. and Hélein F., Ginzburg–Landau Vortices, Birkhäuser, Boston, 1994. 10.1007/978-1-4612-0287-5Suche in Google Scholar

[5] Brizzi R. and Chalot J. P., Homogénéisation de frontière, Doctoral Dissertation, Université de Nice, Nice, 1978. Suche in Google Scholar

[6] Brizzi R. and Chalot J. P., Boundary homogenization and Neumann boundary value problem, Ric. Mat. 46 (1997), 341–387. Suche in Google Scholar

[7] Cardone G., D’Apice C. and De Maio U., Homogenization of mixed Neumann and Dirichlet problems, NoDEA Nonlinear Differential Equations Appl. 9 (2002), 325–346. 10.1007/s00030-002-8131-zSuche in Google Scholar

[8] Corbo Esposito A., D’Apice C. and Gaudiello A., Homogenization in a perforated domain with both Dirichlet and Neumann boundary conditions on the holes, Asymptot. Anal. 31 (2002), no. 3–4, 297–316. Suche in Google Scholar

[9] Hadiji R., Gaudiello A. and Picard C., Homogenization of the Ginzburg–Landau equation in a domain with oscillating boundary, Commun. Appl. Anal. 7 (2003), no. 2–3, 209–223. Suche in Google Scholar

[10] Hélein F., Régularité des applications faiblement harmoniques entre une surface et une sphère, C. R. Acad. Sci. Paris Sér. I 311 (1990), 519–524. Suche in Google Scholar

[11] Khruslov E. and Pankratov L., Homogenization of boundary problems for Ginzburg–Landau equation in weakly connected domains, Spectral Operator Theory and Related Topics, Adv. Sov. Math. 19, American Mathematical Society, Providence (1994), 233–268. 10.1090/advsov/019/09Suche in Google Scholar

Received: 2015-11-30
Revised: 2016-6-19
Accepted: 2016-6-20
Published Online: 2016-8-11
Published in Print: 2016-10-1

© 2016 by De Gruyter

Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/apam-2015-0078/html
Button zum nach oben scrollen