Home Remark on Weil’s conjectures
Article
Licensed
Unlicensed Requires Authentication

Remark on Weil’s conjectures

  • Igor Nikolaev EMAIL logo
Published/Copyright: August 30, 2016

Abstract

We introduce a cohomology theory for a class of projective varieties over a finite field coming from the canonical trace on a C*-algebra attached to the variety. Using the cohomology, we prove the rationality, functional equation and the Betti numbers conjectures for the zeta function of the variety.

MSC 2010: 14F42; 46L85

References

[1] Artin M. and van den Bergh M., Twisted homogeneous coordinate rings, J. Algebra 133 (1990), 249–271. 10.1016/0021-8693(90)90269-TSearch in Google Scholar

[2] Blackadar B., K-Theory for Operator Algebras, Math. Sci. Res. Inst. Publ. 5, Springer, New York, 1986. 10.1007/978-1-4613-9572-0Search in Google Scholar

[3] Grothendieck A., Standard conjectures on algebraic cycles, Algebraic Geometry (Bombay 1968), Oxford University Press, Oxford (1969), 193–199. Search in Google Scholar

[4] Hartshorne R., Algebraic Geometry, Grad. Texts in Math. 52, Springer, New York, 1977. 10.1007/978-1-4757-3849-0Search in Google Scholar

[5] Hartshorne R., Deformation Theory, Grad. Texts in Math. 257, Springer, New York, 2010. 10.1007/978-1-4419-1596-2Search in Google Scholar

[6] Manin Y. I., Real multiplication and noncommutative geometry, Legacy of Niels Hendrik Abel (Oslo 2002), Springer, Berlin (2004), 685–727. 10.1007/978-3-642-18908-1_23Search in Google Scholar

[7] Murphy G. J., C*-Algebras and Operator Theory, Academic Press, New York, 1990. Search in Google Scholar

[8] Nikolaev I., Noncommutative geometry of algebraic curves, Proc. Amer. Math. Soc. 137 (2009), 3283–3290. 10.1090/S0002-9939-09-09917-1Search in Google Scholar

[9] Nikolaev I., On trace cohomology, preprint 2014, https://arxiv.org/abs/1407.3982. Search in Google Scholar

[10] Nikolaev I., On traces of Frobenius endomorphisms, Finite Fields Appl. 25 (2014), 270–279. 10.1016/j.ffa.2013.10.003Search in Google Scholar

[11] Serre J. P., Fasceaux algébriques cohérents, Ann. of Math. (2) 61 (1955), 197–278. 10.2307/1969915Search in Google Scholar

[12] Silverman J. H., Advanced Topics in the Arithmetic of Elliptic Curves, Grad. Texts in Math. 151, Springer, New York, 1994. 10.1007/978-1-4612-0851-8Search in Google Scholar

[13] Smale S., Differentiable dynamical systems, Bull. Amer. Math. Soc. (N.S.) 73 (1967), 747–817. 10.1090/S0002-9904-1967-11798-1Search in Google Scholar

[14] Stafford J. T. and van den Bergh M., Noncommutative curves and noncommutative surfaces, Bull. Amer. Math. Soc. (N.S.) 38 (2001), 171–216. 10.1090/S0273-0979-01-00894-1Search in Google Scholar

[15] Weil A., Numbers of solutions of equations in finite fields, Bull. Amer. Math. Soc. (N.S.) 55 (1949), 497–508. 10.1007/978-1-4757-1705-1_50Search in Google Scholar

[16] Williams D. P., Crossed Products of C*-Algebras, Math. Surveys Monogr. 134, American Mathematical Society, Providence, 2007. 10.1090/surv/134Search in Google Scholar

Received: 2015-9-19
Accepted: 2016-8-4
Published Online: 2016-8-30
Published in Print: 2016-10-1

© 2016 by De Gruyter

Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/apam-2015-0052/html
Scroll to top button