Abstract
This paper addresses the asymptotic analysis of minimizers of the classical Ginzburg–Landau energy in a thin multidomain. More precisely we are interested in the minimization of the energy
over all maps
References
[1] André N. and Shafrir I., Minimization of a Ginzburg–Landau functional with weight, C. R. Acad. Sci. Paris Sér. I 321 (1995), 999–1004. Search in Google Scholar
[2] Beaulieu A. and Hadiji R., Asymptotics for minimizers of a class of Ginzburg–Landau equations with weight, C. R. Acad. Sci. Paris Sér. I 320 (1995), 181–186. Search in Google Scholar
[3] Bethuel F., Brezis H. and Hélein F., Asymptotics for the minimization of a Ginzburg–Landau functional, Calc. Var. Partial Differential Equations 1 (1993), 123–148. 10.1007/BF01191614Search in Google Scholar
[4] Bethuel F., Brezis H. and Hélein F., Ginzburg–Landau Vortices, Birkhäuser, Boston, 1994. 10.1007/978-1-4612-0287-5Search in Google Scholar
[5] Brizzi R. and Chalot J. P., Homogénéisation de frontière, Doctoral Dissertation, Université de Nice, Nice, 1978. Search in Google Scholar
[6] Brizzi R. and Chalot J. P., Boundary homogenization and Neumann boundary value problem, Ric. Mat. 46 (1997), 341–387. Search in Google Scholar
[7] Cardone G., D’Apice C. and De Maio U., Homogenization of mixed Neumann and Dirichlet problems, NoDEA Nonlinear Differential Equations Appl. 9 (2002), 325–346. 10.1007/s00030-002-8131-zSearch in Google Scholar
[8] Corbo Esposito A., D’Apice C. and Gaudiello A., Homogenization in a perforated domain with both Dirichlet and Neumann boundary conditions on the holes, Asymptot. Anal. 31 (2002), no. 3–4, 297–316. Search in Google Scholar
[9] Hadiji R., Gaudiello A. and Picard C., Homogenization of the Ginzburg–Landau equation in a domain with oscillating boundary, Commun. Appl. Anal. 7 (2003), no. 2–3, 209–223. Search in Google Scholar
[10] Hélein F., Régularité des applications faiblement harmoniques entre une surface et une sphère, C. R. Acad. Sci. Paris Sér. I 311 (1990), 519–524. Search in Google Scholar
[11] Khruslov E. and Pankratov L., Homogenization of boundary problems for Ginzburg–Landau equation in weakly connected domains, Spectral Operator Theory and Related Topics, Adv. Sov. Math. 19, American Mathematical Society, Providence (1994), 233–268. 10.1090/advsov/019/09Search in Google Scholar
© 2016 by De Gruyter
Articles in the same Issue
- Frontmatter
- Remark on Weil’s conjectures
- Characterization of Dini–Lipschitz functions for the Helgason Fourier transform on rank one symmetric spaces
- A note on the generic nature of Pringsheim functions
- Asymptotic analysis of a class of Ginzburg–Landau equations in thin multidomains
- Ulam–Hyers stabilities of a generalized composite functional equation in non-Archimedean spaces
- On the square subgroups of decomposable torsion-free abelian groups of rank three
Articles in the same Issue
- Frontmatter
- Remark on Weil’s conjectures
- Characterization of Dini–Lipschitz functions for the Helgason Fourier transform on rank one symmetric spaces
- A note on the generic nature of Pringsheim functions
- Asymptotic analysis of a class of Ginzburg–Landau equations in thin multidomains
- Ulam–Hyers stabilities of a generalized composite functional equation in non-Archimedean spaces
- On the square subgroups of decomposable torsion-free abelian groups of rank three