Startseite Mathematik A Sobolev gradient flow for the area-normalised Dirichlet energy of H 1 maps
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A Sobolev gradient flow for the area-normalised Dirichlet energy of H 1 maps

  • Shinya Okabe , Philip Schrader , Glen Wheeler ORCID logo EMAIL logo und Valentina-Mira Wheeler
Veröffentlicht/Copyright: 29. August 2025

Abstract

In this article we study the H 1 -gradient flow for the energy E [ X ] given by the quotient of the Dirichlet energy and the signed enclosed area of an H 1 map X : 𝕊 2 . We prove that solutions with initially positive signed enclosed area exist eternally, and converge as t to a (possibly multiply-covered) circle. In this way we recover an improved parametrised isoperimetric inequality for H 1 maps.


Communicated by Guofang Wang


Award Identifier / Grant number: 20KK0057

Award Identifier / Grant number: 21H00990

Award Identifier / Grant number:

Funding statement: This research was supported in part by the grants JSPS KAKENHI 20KK0057, 21H00990. The fourth author acknowledges support from ARC Discovery Project DP180100431 and ARC DECRA DE190100379.

Acknowledgements

The authors are grateful for the support provided from JSPS KAKENHI Grants 20KK0057 and 21H00990 to facilitate travel to Tohoku University where the majority of this research was completed.

References

[1] K.-S. Chou, A blow-up criterion for the curve shortening flow by surface diffusion, Hokkaido Math. J. 32 (2003), no. 1, 1–19. 10.14492/hokmj/1350652421Suche in Google Scholar

[2] C. L. Epstein and M. Gage, The curve shortening flow, Wave Motion: Theory, Modelling, and Computation, Math. Sci. Res. Inst. Publ. 7, Springer, New York (1987), 15–59. 10.1007/978-1-4613-9583-6_2Suche in Google Scholar

[3] P. M. N. Feehan, On the Morse–Bott property of analytic functions on Banach spaces with Łojasiewicz exponent one half, Calc. Var. Partial Differential Equations 59 (2020), no. 2, Paper No. 87. 10.1007/s00526-020-01734-4Suche in Google Scholar

[4] E. Lesigne, On the behavior at infinity of an integrable function, Amer. Math. Monthly 117 (2010), no. 2, 175–181. 10.4169/000298910x476095Suche in Google Scholar

[5] T. Miura and S. Okabe, On the isoperimetric inequality and surface diffusion flow for multiply winding curves, Arch. Ration. Mech. Anal. 239 (2021), no. 2, 1111–1129. 10.1007/s00205-020-01591-7Suche in Google Scholar

[6] J. W. Neuberger, Sobolev Gradients and Differential Equations, 2nd ed., Lecture Notes in Math. 1670, Springer, Berlin, 2010. 10.1007/978-3-642-04041-2Suche in Google Scholar

[7] S. Okabe and P. Schrader, Convergence of Sobolev gradient trajectories to elastica, preprint (2021), https://arxiv.org/abs/2107.06504. Suche in Google Scholar

[8] R. Osserman, The isoperimetric inequality, Bull. Amer. Math. Soc. 84 (1978), no. 6, 1182–1238. 10.1090/S0002-9904-1978-14553-4Suche in Google Scholar

[9] P. Schrader, G. Wheeler and V.-M. Wheeler, On the H 1 ( d s γ ) -gradient flow for the length functional, J. Geom. Anal. 33 (2023), no. 9, Paper No. 297. 10.1007/s12220-023-01305-xSuche in Google Scholar

[10] B. Süssmann, Isoperimetric inequalities for special classes of curves, Differential Geom. Appl. 29 (2011), no. 1, 1–6. 10.1016/j.difgeo.2010.12.005Suche in Google Scholar

[11] X.-L. Wang, H.-L. Li and X.-L. Chao, Length-preserving evolution of immersed closed curves and the isoperimetric inequality, Pacific J. Math. 290 (2017), no. 2, 467–479. 10.2140/pjm.2017.290.467Suche in Google Scholar

[12] E. Zeidler, Nonlinear Functional Analysis and its Applications. I, Springer, New York, 1986. 10.1007/978-1-4612-4838-5Suche in Google Scholar

Received: 2024-07-17
Revised: 2025-07-23
Published Online: 2025-08-29
Published in Print: 2025-10-01

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 2.2.2026 von https://www.degruyterbrill.com/document/doi/10.1515/acv-2024-0081/html
Button zum nach oben scrollen