Home Mathematics Harnack inequality for degenerate elliptic equations with matrix weights
Article
Licensed
Unlicensed Requires Authentication

Harnack inequality for degenerate elliptic equations with matrix weights

  • Giuseppe Di Fazio ORCID logo EMAIL logo , Maria Stella Fanciullo ORCID logo , Scott Rodney ORCID logo and Pietro Zamboni ORCID logo
Published/Copyright: September 11, 2025

Abstract

Harnack inequality and consequent regularity is proved for weak solutions of certain degenerate elliptic equations.

MSC 2020: 35B65

Funding source: Università di Catania

Award Identifier / Grant number: 2016/2018

Funding statement: This work has been supported by Università degli Studi di Catania, Piano della Ricerca 2016/2018 Linea di intervento 2.

  1. Communicated by: Ugo Gianazza

References

[1] M. Aizenman and B. Simon, Brownian motion and Harnack inequality for Schrödinger operators, Comm. Pure Appl. Math. 35 (1982), no. 2, 209–273. 10.1002/cpa.3160350206Search in Google Scholar

[2] A. M. Alharbi, G. Di Fazio, D. A. Gomes and M. Ucer, Regularity for weak solutions to first-order local mean field games, NoDEA Nonlinear Differential Equations Appl. 32 (2025), no. 5, Paper No. 99. 10.1007/s00030-025-01099-7Search in Google Scholar

[3] S. M. Buckley, Inequalities of John–Nirenberg type in doubling spaces, J. Anal. Math. 79 (1999), 215–240. 10.1007/BF02788242Search in Google Scholar

[4] L. Capogna, D. Danielli and N. Garofalo, An embedding theorem and the Harnack inequality for nonlinear subelliptic equations, Comm. Partial Differential Equations 18 (1993), no. 9–10, 1765–1794. 10.1080/03605309308820992Search in Google Scholar

[5] F. Chiarenza, E. Fabes and N. Garofalo, Harnack’s inequality for Schrödinger operators and the continuity of solutions, Proc. Amer. Math. Soc. 98 (1986), no. 3, 415–425. 10.1090/S0002-9939-1986-0857933-4Search in Google Scholar

[6] S.-K. Chua, S. Rodney and R. Wheeden, A compact embedding theorem for generalized Sobolev spaces, Pacific J. Math. 265 (2013), no. 1, 17–57. 10.2140/pjm.2013.265.17Search in Google Scholar

[7] D. Cruz-Uribe, M. Penrod and S. Rodney, Poincaré inequalities and Neumann problems for the variable exponent setting, Math. Eng. 4 (2022), no. 5, 1–22. 10.3934/mine.2022036Search in Google Scholar

[8] D. Cruz-Uribe and S. Rodney, Bounded weak solutions to elliptic PDE with data in Orlicz spaces, J. Differential Equations 297 (2021), 409–432. 10.1016/j.jde.2021.06.025Search in Google Scholar

[9] D. Danielli, A Fefferman–Phong type inequality and applications to quasilinear subelliptic equations, Potential Anal. 11 (1999), no. 4, 387–413. 10.1023/A:1008674906902Search in Google Scholar

[10] D. Danielli, N. Garofalo and D.-M. Nhieu, Trace inequalities for Carnot–Carathéodory spaces and applications, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 27 (1998), no. 2, 195–252. Search in Google Scholar

[11] G. Di Fazio, M. S. Fanciullo, D. D. Monticelli, S. Rodney and P. Zamboni, Matrix weights and regularity for degenerate elliptic equations, Nonlinear Anal. 237 (2023), Article ID 113363. 10.1016/j.na.2023.113363Search in Google Scholar

[12] G. Di Fazio, M. S. Fanciullo and P. Zamboni, Harnack inequality and smoothness for quasilinear degenerate elliptic equations, J. Differential Equations 245 (2008), no. 10, 2939–2957. 10.1016/j.jde.2008.04.005Search in Google Scholar

[13] G. Di Fazio, M. S. Fanciullo and P. Zamboni, Harnack inequality and regularity for degenerate quasilinear elliptic equations, Math. Z. 264 (2010), no. 3, 679–695. 10.1007/s00209-009-0485-zSearch in Google Scholar

[14] G. Di Fazio, M. S. Fanciullo and P. Zamboni, Regularity for a class of strongly degenerate quasilinear operators, J. Differential Equations 255 (2013), no. 11, 3920–3939. 10.1016/j.jde.2013.07.062Search in Google Scholar

[15] G. Di Fazio, M. S. Fanciullo and P. Zamboni, Harnack inequality for degenerate elliptic equations and sum operators, Commun. Pure Appl. Anal. 14 (2015), no. 6, 2363–2376. 10.3934/cpaa.2015.14.2363Search in Google Scholar

[16] G. Di Fazio, M. S. Fanciullo and P. Zamboni, Sum operators and Fefferman-Phong inequalities, Geometric Methods in PDE’s, Springer INdAM Ser. 13, Springer, Cham (2015), 111–120. 10.1007/978-3-319-02666-4_6Search in Google Scholar

[17] G. Di Fazio, M. S. Fanciullo and P. Zamboni, Harnack inequality and continuity of weak solutions for doubly degenerate elliptic equations, Math. Z. 292 (2019), no. 3–4, 1325–1336. 10.1007/s00209-018-2148-4Search in Google Scholar

[18] G. Di Fazio, M. S. Fanciullo and P. Zamboni, Degenerate elliptic equations and Sum operators, New Trends in Analysis and Geometry, Cambridge Scholars, Newcastle (2020), 45–80. Search in Google Scholar

[19] G. Di Fazio, M. S. Fanciullo and P. Zamboni, Nonlinear elliptic equations related to weighted sum operators, Nonlinear Anal. 194 (2020), Article ID 111570. 10.1016/j.na.2019.07.003Search in Google Scholar

[20] G. Di Fazio, M. S. Fanciullo and P. Zamboni, Boundary regularity for strongly degenerate operators of Grushin type, Electron. J. Differential Equations 2022 (2022), Paper No. 65. 10.58997/ejde.2022.65Search in Google Scholar

[21] G. Di Fazio and F. Mamedov, On Harnack inequality and Hölder continuity for non uniformly elliptic equations, Ric. Mat. 74 (2025), no. 1, 271–300. 10.1007/s11587-024-00919-9Search in Google Scholar

[22] G. Di Fazio and Y. Miyazaki, Sobolev–Morrey spaces via Muramatu’s integral formula, Anal. Appl. (2025), 10.1142/S0219530525300017. 10.1142/S0219530525300017Search in Google Scholar

[23] G. Di Fazio and P. Zamboni, A Fefferman–Poincaré type inequality for Carnot–Carathéodory vector fields, Proc. Amer. Math. Soc. 130 (2002), no. 9, 2655–2660. 10.1090/S0002-9939-02-06394-3Search in Google Scholar

[24] G. Di Fazio and P. Zamboni, Hölder continuity for quasilinear subelliptic equations in Carnot Carathéodory spaces, Math. Nachr. 272 (2004), 3–10. 10.1002/mana.200310185Search in Google Scholar

[25] G. Di Fazio and P. Zamboni, Local regularity of solutions to quasilinear subelliptic equations in Carnot Caratheodory spaces, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 9 (2006), no. 2, 485–504. Search in Google Scholar

[26] G. Di Fazio and P. Zamboni, Regularity for quasilinear degenerate elliptic equations, Math. Z. 253 (2006), no. 4, 787–803. 10.1007/s00209-006-0933-ySearch in Google Scholar

[27] B. Franchi, C. E. Gutiérrez and R. L. Wheeden, Two-weight Sobolev-Poincaré inequalities and Harnack inequality for a class of degenerate elliptic operators, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) 5 (1994), no. 2, 167–175. Search in Google Scholar

[28] B. Franchi, C. E. Gutiérrez and R. L. Wheeden, Weighted Sobolev–Poincaré inequalities for Grushin type operators, Comm. Partial Differential Equations 19 (1994), no. 3–4, 523–604. 10.1080/03605309408821025Search in Google Scholar

[29] B. Franchi, C. Pérez and R. L. Wheeden, A sum operator with applications to self-improving properties of Poincaré inequalities in metric spaces, J. Fourier Anal. Appl. 9 (2003), no. 5, 511–540. 10.1007/s00041-003-0025-xSearch in Google Scholar

[30] O. A. Ladyzhenskaya and N. N. Ural’tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968. Search in Google Scholar

[31] G. M. Lieberman, Sharp forms of estimates for subsolutions and supersolutions of quasilinear elliptic equations involving measures, Comm. Partial Differential Equations 18 (1993), no. 7–8, 1191–1212. 10.1080/03605309308820969Search in Google Scholar

[32] D. D. Monticelli, S. Rodney and R. L. Wheeden, Boundedness of weak solutions of degenerate quasilinear equations with rough coefficients, Differential Integral Equations 25 (2012), no. 1–2, 143–200. 10.57262/die/1356012830Search in Google Scholar

[33] D. D. Monticelli, S. Rodney and R. L. Wheeden, Harnack’s inequality and Hölder continuity for weak solutions of degenerate quasilinear equations with rough coefficients, Nonlinear Anal. 126 (2015), 69–114. 10.1016/j.na.2015.05.029Search in Google Scholar

[34] M. A. Ragusa and P. Zamboni, Local regularity of solutions to quasilinear elliptic equations with general structure, Commun. Appl. Anal. 3 (1999), no. 1, 131–147. Search in Google Scholar

[35] J.-M. Rakotoson, Quasilinear equations and spaces of Campanato–Morrey type, Comm. Partial Differential Equations 16 (1991), no. 6–7, 1155–1182. 10.1080/03605309108820793Search in Google Scholar

[36] J.-M. Rakotoson and W. P. Ziemer, Local behavior of solutions of quasilinear elliptic equations with general structure, Trans. Amer. Math. Soc. 319 (1990), no. 2, 747–764. 10.1090/S0002-9947-1990-0998128-9Search in Google Scholar

[37] J. Serrin, Local behavior of solutions of quasi-linear equations, Acta Math. 111 (1964), 247–302. 10.1007/BF02391014Search in Google Scholar

[38] N. S. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations, Comm. Pure Appl. Math. 20 (1967), 721–747. 10.1002/cpa.3160200406Search in Google Scholar

[39] P. Zamboni, The Harnack inequality for quasilinear elliptic equations under minimal assumptions, Manuscripta Math. 102 (2000), no. 3, 311–323. 10.1007/s002290050002Search in Google Scholar

[40] P. Zamboni, Hölder continuity for solutions of linear degenerate elliptic equations under minimal assumptions, J. Differential Equations 182 (2002), no. 1, 121–140. 10.1006/jdeq.2001.4094Search in Google Scholar

Received: 2024-12-03
Accepted: 2025-08-16
Published Online: 2025-09-11
Published in Print: 2025-10-01

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 31.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/acv-2024-0124/html
Scroll to top button