Startseite Naturwissenschaften Pinus pinaster Oleoresin in Plus Trees
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Pinus pinaster Oleoresin in Plus Trees

  • C. Arrabal , M. Cortijo , B. Fernández de Simón , M.C. García-Vallejo und E. Cadahía:
Veröffentlicht/Copyright: 1. Juni 2005
Holzforschung
Aus der Zeitschrift Band 56 Heft 3

Summary

The present paper establishes the relationship between certain components of oleoresin and the character of a tree as high producer (plus tree). The composition of the oleoresin (monoterpenes, sesquiterpenes, neutral diterpenes and resin acids) of Pinus pinaster in plus trees was studied by gaschromatography/mass spectrometry. The main components of the monoterpenes are α-pinene, β-pinene, limonene + β-phellandrene; of the sesquiterpenes β-caryophylene and longifolene; of neutral diterpenes isoabienol, abienol, isopimaral, pimaral, 11,13-labdien-8-ol and of resin acids levopimaric + palustric, neoabietic, abietic, isopimaric, pimaric, dehydroabietic, sandaracopimaric and 7,13,15 abietatrienoic acid. The components which enable us to distinguish between plus and control trees are myrcene and noracid 1 at a level of significance of 1%, and abienol and dehydroabietic acid at 5%. The composition of diterpenes permits a certain approach to distinguish between control and plus trees.

:
Published Online: 2005-06-01
Published in Print: 2002-04-29

Copyright © 2002 by Walter de Gruyter GmbH & Co. KG

Artikel in diesem Heft

  1. Weight Loss and Cell Wall Degradation in Rubberwood Caused by Sapstain Fungus Botryodiplodia theobromae
  2. Changes of EPR Spectra of Wood Impregnated with Copper-Based Preservatives during Exposure to Several Wood-Rotting Fungi
  3. Quantitative Analyses of Morphological Variation of Cross-Sectional Tracheids of Hinoki (Chamaecyparis obtusa Endl.) Near Knot by Image Processing
  4. Direct Effects of Wood Characteristics on Pulp and Handsheet Properties of Eucalyptus globulus
  5. Identification of the Lignan Nortrachelogenin in Knot and Branch Heartwood of Scots Pine (Pinus sylvestris L.)
  6. Chemical Composition of Lipophilic and Phenolic Constituents of Barks from Pinus nigra, Abies bornmülleriana and Castanea sativa
  7. Pinus pinaster Oleoresin in Plus Trees
  8. Determination of Polyphenolic Content of Bark Extracts for Wood Adhesives
  9. Softwood Bark Pyrolysis Oil-PF Resols. Part 2. Thermal Analysis by DSC and TG
  10. Softwood Bark Pyrolysis Oil-PF Resols. Part 3. Use of Propylene Carbonate as Resin Cure Accelerator
  11. Steam Explosion of Aspen Wood. Characterisation of Reaction Products
  12. Characterization of Black Liquors from Soda-AQ Pulping of Reed Canary Grass (Phalaris arundinacea L.)
  13. Modification of the Nitrogen Content and C:N Ratio of Sitka Spruce Timber by Kiln and Air Drying
  14. High Resolution Measurement of the Surface Layer Moisture Content during Drying of Wood Using a Novel Magnetic Resonance Imaging Technique
  15. Longitudinal Permeability and Diffusivity of Steam in Beech Determined with a Wicke-Kallenbach-Cell
  16. UF/pMDI Wood Adhesives: Networks Blend versus Copolymerization
Heruntergeladen am 2.2.2026 von https://www.degruyterbrill.com/document/doi/10.1515/HF.2002.043/html
Button zum nach oben scrollen