Startseite Lebenswissenschaften Metal-binding sites at the active site of restriction endonuclease BamHI can conform to a one-ion mechanism
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Metal-binding sites at the active site of restriction endonuclease BamHI can conform to a one-ion mechanism

  • Letif Mones , István Simon und Monika Fuxreiter
Veröffentlicht/Copyright: 10. Januar 2007
Biological Chemistry
Aus der Zeitschrift Band 388 Heft 1

Abstract

The number of metal ions required for phosphoryl transfer in restriction endonucleases is still an unresolved question in molecular biology. The two Ca2+ and Mn2+ ions observed in the pre- and post-reactive complexes of BamHI conform to the classical two-metal ion choreography. We probed the Mg2+ cofactor positions at the active site of BamHI by molecular dynamics simulations with one and two metal ions present and identified several catalytically relevant sites. These can mark the pathway of a single ion during catalysis, suggesting its critical role, while a regulatory function is proposed for a possible second ion.

:

Corresponding author

References

Ban, C. and Yang, W. (1998). Structural basis for MutH activation in E. coli mismatch repair and relationship of MutH to restriction endonucleases. EMBO J.17, 1526–1534.Suche in Google Scholar

Beese, L.S., Friedman, J.M., and Steitz, T.A. (1993). Crystal structures of the Klenow fragment of DNA polymerase I complexed with deoxynucleoside triphosphate and pyrophosphate. Biochemistry32, 14095–14101.10.1021/bi00214a004Suche in Google Scholar PubMed

Bickle, T.A. and Krüger, D.H. (1993). Biology of DNA restriction. Microbiol. Rev.57, 434–450.10.1128/mr.57.2.434-450.1993Suche in Google Scholar PubMed PubMed Central

Bunting, K.A., Roe, S.M., Headley, A., Brown, T., Savva, R., and Pearl, L.H. (2003). Crystal structure of the Escherichia coli dcm very-short-patch DNA repair endonuclease bound to its reaction product-site in a DNA superhelix. Nucleic Acids Res.31, 1633–1639.10.1093/nar/gkg273Suche in Google Scholar PubMed PubMed Central

Chevalier, B.S. and Stoddard, B.L. (2001). Homing endonucleases: structural and functional insight into the catalysts of intron/intein mobility. Nucleic Acids Res.29, 3757–3774.10.1093/nar/29.18.3757Suche in Google Scholar PubMed PubMed Central

Cornell, W.D., Cieplak, R., Bayly, C.L., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.G., Fox, T., Caldwell, J.W., and Kollman, P.A. (1995). A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc.117, 5179–5197.10.1021/ja00124a002Suche in Google Scholar

Deibert, G., Grazulis, S., Sasnauskas, G., Siksnys, V., and Huber, R. (2000). Structure of tetrameric restriction endonuclease NgoMIV in complex with cleaved DNA. Nat. Struct. Biol.7, 792–799.10.1038/79032Suche in Google Scholar PubMed

Etzkorn, C. and Horton, N.C. (2004a). Ca2+ binding in the active site of HincII: implications for the catalytic mechanism. Biochemistry43, 13256–13270.10.1021/bi0490082Suche in Google Scholar PubMed

Etzkorn, C. and Horton, N.C. (2004b). Mechanistic insights from the structures of HincII bound to cognate DNA cleaved from addition of Mg2+ and Mn2+. J. Mol. Biol.343, 833–849.10.1016/j.jmb.2004.08.082Suche in Google Scholar PubMed

Florian, J., Goodman, M.F., and Warshel, A. (2003). Computer simulation of the chemical catalysis of DNA polymerases: discriminating between alternative nucleotide insertion mechanisms for T7 DNA polymerase. J. Am. Chem. Soc.125, 8163–8177.10.1021/ja028997oSuche in Google Scholar PubMed

Fothergill, M., Goodman, M.F., Petruska, J., and Warshel, A. (1995). Structure-energy analysis of the role of metal ions in phosphodiester bond hydrolysis by DNA polymerase I. J. Am. Chem. Soc.117, 11619–11627.10.1021/ja00152a001Suche in Google Scholar

Fuxreiter, M. and Osman, R. (2001). Probing the general base catalysis in the first step of BamHI action by computer simulations. Biochemistry40, 15017–15023.10.1021/bi010987xSuche in Google Scholar

Glusker, J.P. (1991). Structural aspects of metal liganding to functional groups in proteins. Adv. Protein Chem.42, 1–76.10.1016/S0065-3233(08)60534-3Suche in Google Scholar

Hadden, J.M., Declais, A.C., Phillips, S.E., and Lilley, D.M. (2002). Metal ions bound at the active site of the junction-resolving enzyme T7 endonuclease I. EMBO J.21, 3505–3515.10.1093/emboj/cdf337Suche in Google Scholar

Hickman, A.B., Li, Y., Mathew, S.V., May, E.W., Craig, N.L., and Dyda, F. (2000). Unexpected structural diversity in DNA recombination: the restriction endonuclease connection. Mol. Cell5, 1025–1034.10.1016/S1097-2765(00)80267-1Suche in Google Scholar

Horton, J.R. and Cheng, X. (2000). PvuII endonuclease contains two calcium ions in active sites. J. Mol. Biol.300, 1049–1056.10.1006/jmbi.2000.3938Suche in Google Scholar

Horton, N.C. and Perona, J.J. (2004). DNA cleavage by EcoRV endonuclease: two metal ions in three metal ion binding sites. Biochemistry43, 6841–6857.10.1021/bi0499056Suche in Google Scholar

Horton, N.C., Newberry, K.J., and Perona, J.J. (1998). Metal ion-mediated substrate-assisted catalysis in type II restriction endonucleases. Proc. Natl. Acad. Sci. USA95, 13489–13494.10.1073/pnas.95.23.13489Suche in Google Scholar

Horton, N.C., Connolly, B.A., and Perona, J.J. (2000). Inhibition of EcoRV endonuclease by deoxyribo-3′-S-phophorothiolates: a high resolution X-ray crystallographic study. J. Am. Chem. Soc.122, 3314–3324.10.1021/ja993719jSuche in Google Scholar

Jeltsch, A., Alves, J., Wolfes, H., Maass, G., and Pingoud, A. (1993). Substrate-assisted catalysis in the cleavage of DNA by the EcoRI and EcoRV restriction enzymes. Proc. Natl. Acad. Sci. USA90, 8499–8503.10.1073/pnas.90.18.8499Suche in Google Scholar

Jeltsch, A., Pleckaityte, M., Selent, U., Wolfes, H., Siksnys, V., and Pingoud, A. (1995). Evidence for substrate-assisted catalysis in the DNA cleavage of several restriction endonucleases. Gene157, 157–162.10.1016/0378-1119(94)00617-2Suche in Google Scholar

Jorgensen, W.L., Chandrashekar, J., Madura, J.D., Impey, R., and Klein, M.L. (1983). Comparison of simple potential functions for simulating liquid water. J. Chem. Phys.79, 926–935.10.1063/1.445869Suche in Google Scholar

Kovall, R.A. and Matthews, B.W. (1998). Structural, functional, and evolutionary relationships between λ-exonuclease and the type II restriction endonucleases. Proc. Natl. Acad. Sci. USA95, 7893–7897.10.1073/pnas.95.14.7893Suche in Google Scholar

Lee, J.Y., Chang, J., Joseph, N., Ghirlando, R., Rao, D.N., and Yang, W. (2005). MutH complexed with hemi- and unmethylated DNAs: coupling base recognition and DNA cleavage. Mol. Cell20, 155–166.10.1016/j.molcel.2005.08.019Suche in Google Scholar

Lovell, S., Goryshin, I.Y., Reznikoff, W.R., and Rayment, I. (2002). Two-metal active site binding of a Tn5 transposase synaptic complex. Nat. Struct. Biol.9, 278–281.10.1038/nsb778Suche in Google Scholar

Lukacs, C.M., Kucera, R., Schildkraut, I., and Aggarwal, A.K. (2000). Understanding the immutability of restriction enzymes: crystal structure of BglII and its DNA substrate at 1.5Å resolution. Nat. Struct. Biol.7, 134–140.Suche in Google Scholar

Marelius, J., Kolmodin, K., Feierberg, I., and Åqvist, J. (1998). Q: a molecular dynamics program for free energy calculations and empirical valence bond simulations in biomolecular systems. J. Mol. Graph. Model.16, 213–225, 261.10.1016/S1093-3263(98)80006-5Suche in Google Scholar

Newman, M., Lunnen, K., Wilson, G., Greci, J., Schildkraut, I., and Phillips, S.E. (1998). Crystal structure of restriction endonuclease BglI bound to its interrupted DNA recognition sequence. EMBO J.17, 5466–5476.10.1093/emboj/17.18.5466Suche in Google Scholar

Noble, C.G. and Maxwell, A. (2002). The role of GyrB in the DNA cleavage-religation reaction of DNA gyrase: a proposed two metal-ion mechanism. J. Mol. Biol.318, 361–371.10.1016/S0022-2836(02)00049-9Suche in Google Scholar

Nowotny, M. and Yang, W. (2006). Stepwise analyses of metal ions in RNase H catalysis from substrate destabilization to product release. EMBO J.25, 1924–1933.10.1038/sj.emboj.7601076Suche in Google Scholar

Pingoud, A., Fuxreiter, M., Pingoud, V., and Wende, W. (2005). Type II restriction endonucleases: structure and mechanism. Cell. Mol. Life Sci.62, 685–707.10.1007/s00018-004-4513-1Suche in Google Scholar

Roberts, R.J. and Halford, S.E. (1993). Type II restriction endonucleases. In: Nucleases, S.M. Linn, R.S. Lloyd and R.J. Roberts, eds. (Cold Spring Harbor, NY, USA: Cold Spring Harbor Laboratory Press), pp. 35–88.Suche in Google Scholar

Rosenberg, J.M. (1991). Structure and function of restriction endonucleases. Curr. Opin. Struct. Biol.1, 104–113.10.1016/0959-440X(91)90018-OSuche in Google Scholar

Steitz, T.A. and Steitz, J.A. (1993). A general two-metal-ion mechanism for catalytic RNA. Proc. Natl. Acad. Sci. USA90, 6498–6502.10.1073/pnas.90.14.6498Suche in Google Scholar

Sträter, N., Lipscomb, W.N., Klabunde, T., and Krebs, B. (1996). Two-metal ion catalysis in enzymatic acyl- and phosphoryl-transfer reactions. Angew. Chem. Int. Ed. Engl.35, 2024–2055.10.1002/anie.199620241Suche in Google Scholar

Tsutakawa, S.E., Muto, T., Kawate, T., Jingami, H., Kunishima, N., Ariyoshi, M., Kohda, D., Nakagawa, M., and Morikawa, K. (1999). Crystallographic and functional studies of very short patch repair endonuclease. Mol. Cell3, 621–628.10.1016/S1097-2765(00)80355-XSuche in Google Scholar

Viadiu, H. (1999). Structural study of specificity and catalysis by restriction endonuclease BamHI. Ph.D. thesis, Columbia University, New York, USA.Suche in Google Scholar

Viadiu, H. and Aggarwal, A.K. (1998). The role of metals in catalysis by the restriction endonuclease BamHI. Nat. Struct. Biol.5, 910–916.10.1038/2352Suche in Google Scholar

Xu, S.Y. and Schildkraut, I. (1991). Isolation of BamHI variants with reduced cleavage activities. J. Biol. Chem.266, 4425–4429.10.1016/S0021-9258(20)64339-3Suche in Google Scholar

Yang, W., Lee, J.Y., and Nowotny, M. (2006). Making and breaking nucleic acids: two-Mg2+-ion catalysis and substrate specificity. Mol. Cell22, 5–13.10.1016/j.molcel.2006.03.013Suche in Google Scholar PubMed

Published Online: 2007-01-10
Published in Print: 2007-01-01

©2007 by Walter de Gruyter Berlin New York

Artikel in diesem Heft

  1. Accumulation of viroid-specific small RNAs and increase in nucleolytic activities linked to viroid-caused pathogenesis
  2. Characterisation of Plasmodium falciparum RESA-like protein peptides that bind specifically to erythrocytes and inhibit invasion
  3. Structural modifications to a high-activity binding peptide located within the PfEMP1 NTS domain induce protection against P. falciparum malaria in Aotus monkeys
  4. Characterisation of YtfM, a second member of the Omp85 family in Escherichia coli
  5. Presence of the propeptide on recombinant lysosomal dipeptidase controls both activation and dimerization
  6. Conformational studies on Arabidopsis sulfurtransferase AtStr1 with spectroscopic methods
  7. Glycine-assisted enhancement of 1,4-β-d-xylan xylanohydrolase activity at alkaline pH with a pH optimum shift
  8. Asef is a Cdc42-specific guanine nucleotide exchange factor
  9. Metal-binding sites at the active site of restriction endonuclease BamHI can conform to a one-ion mechanism
  10. Interaction of the cellular prion protein with raft-like lipid membranes
  11. Tissue-specific transcription factor HNF4α inhibits cell proliferation and induces apoptosis in the pancreatic INS-1 β-cell line
  12. Binding of aflatoxins to the 20S proteasome: effects on enzyme functionality and implications for oxidative stress and apoptosis
  13. The insect metalloproteinase inhibitor gene of the lepidopteran Galleria mellonella encodes two distinct inhibitors
  14. Activation profiles of the zymogen of aspergilloglutamic peptidase
Heruntergeladen am 16.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/BC.2007.009/html
Button zum nach oben scrollen