We study the spectral properties of matrices of long-range percolation model. These are N × N random real symmetric matrices H = { H ( i, j )} i,j whose elements are independent random variables taking zero value with probability , where ψ is an even positive function with ψ ( t ) ≤ 1 and vanishing at infinity. We study the resolvent G ( z ) = ( H – z ) –1 , Im z ≠ 0, in the limit N, b → ∞, b = O ( N α ), 1/3 < α < 1, and obtain the explicit expression T ( z 1 , z 2 ) for the leading term of the correlation function of the normalized trace of the resolvent g N,b ( z ) = N –1 Tr G ( z ). We show that in the scaling limit of local correlations, this term leads to the expression found earlier by other authors for band random matrix ensembles. This shows that the ratio b 2 / N is the correct scale for the eigenvalue density correlation function and that the ensemble we study and that of band random matrices belong to the same class of spectral universality.
Inhalt
-
Erfordert eine Authentifizierung Nicht lizenziertAsymptotic properties of random matrices of long-range percolation modelLizenziert22. Januar 2010
-
Erfordert eine Authentifizierung Nicht lizenziertT-Convolution and its applications to n-dimensional distributionsLizenziert22. Januar 2010
-
Erfordert eine Authentifizierung Nicht lizenziertSome procedures for extending random operatorsLizenziert22. Januar 2010
-
Erfordert eine Authentifizierung Nicht lizenziertCommon random fixed points for multivalued random operators without S- and T-weakly commuting random operatorsLizenziert22. Januar 2010
-
Erfordert eine Authentifizierung Nicht lizenziertFractional SPDEs with non-Lipschitz coefficientsLizenziert22. Januar 2010