We study the normalized eigenvalue counting measure dσ of matrices of long-range percolation model. These are (2 n + 1) × (2 n + 1) random real symmetric matrices H = { H ( i, j )} i,j whose elements are independent random variables taking zero value with probability 1 – ψ (( i – j )/ b ), b ∈ ℝ + , where ψ is an even positive function ψ ( t ) ≤ 1 vanishing at infinity. It is shown that if the third moment of , is uniformly bounded, then the measure dσ = dσ n,b weakly converges in probability in the limit n, b → ∞, b = o ( n ), to the semicircle (or Wigner) distribution. The proof uses the resolvent technique combined with the cumulant expansions method. We show that the normalized trace of resolvent g n,b ( z ) converges in average and that the variance of g n,b ( z ) vanishes. In the second part of the paper, we estimate the rate of decreasing of the variance of g n,b ( z ) under further conditions on the moments of .
Inhalt
-
Erfordert eine Authentifizierung Nicht lizenziertSemicircle law for random matrices of long-range percolation modelLizenziert29. Mai 2009
-
Erfordert eine Authentifizierung Nicht lizenziertThe stochastic maximum principle in optimal control of degenerate diffusions with non-smooth coefficientsLizenziert29. Mai 2009
-
Erfordert eine Authentifizierung Nicht lizenziertThe asymptotic behaviour of the maximum of a random sample subject to trends in location and scaleLizenziert29. Mai 2009
-
Erfordert eine Authentifizierung Nicht lizenziertEvolution process as an alternative to diffusion process and Black–Scholes FormulaLizenziert29. Mai 2009
-
Erfordert eine Authentifizierung Nicht lizenziertOccupation time problems for fractional Brownian motion and some other self-similar processesLizenziert29. Mai 2009
-
Erfordert eine Authentifizierung Nicht lizenziertProperties of the distribution of the random variable defined by A2-continued fraction with independent elementsLizenziert29. Mai 2009