In this paper, a KELM-based ensemble learning approach, integrating Granger causality test, grey relational analysis and KELM (Kernel Extreme Learning Machine), is proposed for the exchange rate forecasting. The study uses a set of sixteen macroeconomic variables including, import, export, foreign exchange reserves, etc. Furthermore, the selected variables are ranked and then three of them, which have the highest degrees of relevance with the exchange rate, are filtered out by Granger causality test and the grey relational analysis, to represent the domestic situation. Then, based on the domestic situation, KELM is utilized for medium-term RMB/USD forecasting. The empirical results show that the proposed KELM-based ensemble learning approach outperforms all other benchmark models in different forecasting horizons, which implies that the KELM-based ensemble learning approach is a powerful learning approach for exchange rates forecasting.
Inhalt
-
Erfordert eine Authentifizierung Nicht lizenziertA KELM-Based Ensemble Learning Approach for Exchange Rate ForecastingLizenziert26. September 2018
-
Erfordert eine Authentifizierung Nicht lizenziertApplication of Drone in Solving Last Mile Parcel DeliveryLizenziert28. September 2018
-
Erfordert eine Authentifizierung Nicht lizenziertThe Difference of Capital Input and Productivity in Service Industries: Based on Four Stages Bootstrap-DEA ModelLizenziert26. September 2018
-
Erfordert eine Authentifizierung Nicht lizenziertParameter Estimation of a Mixed Production Function Model Based on Improved Firefly Algorithm and Model ApplicationLizenziert26. September 2018
-
Erfordert eine Authentifizierung Nicht lizenziertAnalysis of a Discrete-Time Geo/G/1 Queue in a Multi-Phase Service Environment with DisastersLizenziert26. September 2018
-
Erfordert eine Authentifizierung Nicht lizenziertA New K-Shell Decomposition Method for Identifying Influential Spreaders of Epidemics on Community NetworksLizenziert26. September 2018
-
Erfordert eine Authentifizierung Nicht lizenziertNon-equidistance DGM(1,1) Model Based on the Concave Sequence and Its Application to Predict the China’s Per Capita Natural Gas ConsumptionLizenziert26. September 2018