In most exiting portfolio selection models, security returns are assumed to have random or fuzzy distributions. However, uncertainties exist in actual financial markets. Markets are associated not only with inherent risk, but also with background risk that results from the differences among individual investors. This paper investigated the compliance of stock yields to the fuzzy-natured high-order moments of random numbers in order to develop a high-moment trapezoidal fuzzy random portfolio risk model based on variance, skewness, and kurtosis. Data obtained from the Shanghai Stock Exchange and Shenzhen Stock Exchange was used to assess the influence on the proposed model of both background risk and the maximum level of satisfaction of the portfolio. The empirical results demonstrated that the differences between the maximum and minimum variance, skewness, and kurtosis values of the portfolio were positively correlated with the variance of the background risk.
Inhalt
-
Erfordert eine Authentifizierung Nicht lizenziertA High-Moment Trapezoidal Fuzzy Random Portfolio Model with Background RiskLizenziert15. März 2018
-
Erfordert eine Authentifizierung Nicht lizenziertSequential First-Price Auction with Randomly Arriving BuyersLizenziert15. März 2018
-
Erfordert eine Authentifizierung Nicht lizenziertWorst-Case Investment Strategy with DelayLizenziert15. März 2018
-
Erfordert eine Authentifizierung Nicht lizenziertResearch on Advertising and Pricing in E-Supply Chain Under Different Dominant ModesLizenziert15. März 2018
-
Erfordert eine Authentifizierung Nicht lizenziertTransient Analysis of a Two-Heterogeneous Severs Queue with Impatient Behaviour and Multiple VacationsLizenziert15. März 2018
-
Erfordert eine Authentifizierung Nicht lizenziertOptimal Insurance-Package and Investment Problem for an InsurerLizenziert15. März 2018