We studied intracellular magnetite particles produced by several morphological types of magnetotactic bacteria including the spirillar (helical) freshwater species, Magnetospirillum magnetotacticum, and four incompletely characterized marine strains: MV-1, a curved rodshaped bacterium; MC-1 and MC-2, two coccoid (spherical) microorganisms; and MV-4, a spirillum. Particle morphologies, size distributions, and structural features were examined using conventional and high-resolution transmission electron microscopy. The various strains produce crystals with characteristic shapes. All habits can be derived from various combinations of the isometric {111}, {110}, and {100} forms. We compared the size and shape distributions of crystals from magnetotactic bacteria with those of synthetic magnetite grains of similar size and found the biogenic and synthetic distributions to be statistically distinguishable. In particular, the size distributions of the bacterial magnetite crystals are narrower and have a distribution asymmetry that is the opposite of the nonbiogenic sample. The only deviation from ideal structure in the bacterial magnetite seems to be the occurrence of spinel-law twins. Sparse multiple twins were also observed. Because the synthetic magnetite crystals contain twins similar to those in bacteria, in the absence of characteristic chains of crystals, only the size and shape distributions seem to be useful for distinguishing bacterial from nonbiogenic magnetite.
Inhalt
-
Öffentlich zugänglichMagnetite from magnetotactic bacteria: Size distributions and twinning13. November 2015
-
Öffentlich zugänglichFormation of single-domain magnetite by a thermophilic bacterium13. November 2015
-
Öffentlich zugänglichAlteration of microbially precipitated iron oxides and hydroxides13. November 2015
-
Öffentlich zugänglichBacterial reduction of crystalline Fe3+ oxides in single phase suspensions and subsurface materials13. November 2015
-
Öffentlich zugänglichMicrobial oxidation of pyrite: Experiments using microorganisms from an extreme acidic environment13. November 2015
-
Öffentlich zugänglichSulfur isotope variability in biogenic pyrite: Reflections of heterogeneous bacterial colonization?13. November 2015
-
Öffentlich zugänglichIron sulfides from magnetotactic bacteria: Structure, composition, and phase transitions13. November 2015
-
Öffentlich zugänglichFormation of lithified micritic laminae in modern marine stromatolites (Bahamas): The role of sulfur cycling13. November 2015
-
Öffentlich zugänglichBioaccumulation of metals by lichens: Uptake of aqueous uranium by Peltigera membranacea as a function of time and pH13. November 2015
-
Öffentlich zugänglichProduction of carbonate sediments by a unicellular green alga13. November 2015
-
Öffentlich zugänglichPrimary structure of a soluble matrix protein of scallop shell: Implications for calcium carbonate biomineralization13. November 2015
-
Öffentlich zugänglichEffects of microbial activity on the δ18O of dissolved inorganic phosphate and textural features of synthetic apatites13. November 2015
-
Öffentlich zugänglichFeldspars as a source of nutrients for microorganisms13. November 2015
-
Öffentlich zugänglichNovel nano-organisms from Australian sandstones13. November 2015
-
Öffentlich zugänglichExperimental observations of the effects of bacteria on aluminosilicate weathering13. November 2015
-
Öffentlich zugänglichManganite reduction by Shewanella putrefaciens MR-413. November 2015
-
Öffentlich zugänglichMolecular phylogenetic analysis of a bacterial community in Sulphur River, Parker Cave, Kentucky13. November 2015
-
Öffentlich zugänglichThe double helix meets the crystal lattice: The power and pitfalls of nucleic acid approaches for biomineralogical investigations13. November 2015