The thermal shifts of R1 and R2 lines in Cr3+-doped forsterite (Mg2SiO4) are studied by considering both the static contribution due to lattice thermal expansion and the vibrational contribution due to electron-phonon interaction. In the studies, the thermal expansion coefficient of the Cr3+ center is assumed reasonably as that of the corresponding cluster in the host crystal. The results suggest that for R1 and R2 lines the static contributions are opposite in sign and in magnitude about 37% and 45%, respectively, of the corresponding vibrational contributions. The true electron-phonon coupling coefficients α' (obtained by considering both contributions) increase by about 58% and 81%, respectively, for R1 and R2 lines in comparison with the corresponding parameters α obtained by considering only the vibrational contribution. It appears that for the reasonable explanation of thermal shift of spectral lines and the exact estimation of electron-phonon coupling coefficient, both the static and vibrational contributions should be taken into account
© 1946 – 2014: Verlag der Zeitschrift für Naturforschung
Artikel in diesem Heft
- An Investigation on the Fine Structure Levels in the Ground State Configuration for the Antimony Anion
- Ab Initio Calculations of Structural, Electronic, and Mechanical Stability Properties of Magnesium Sulfide
- A Counterpart of the Wadati–Konno–Ichikawa Soliton Hierarchy Associated with so(3,R)
- Physics and Picasso
- Exact Solution for Peristaltic Transport of a Micropolar Fluid in a Channel with Convective Boundary Conditions and Heat Source/Sink
- Investigation of New Ionic Plastic Crystals in Tetraalkylammonium Tetrabuthylborate
- New Rational Homoclinic Solution and Rogue Wave Solution for the Coupled Nonlinear Schrödinger Equation
- Synthesis and Shape Control of Copper Tin Sulphide Nanocrystals and Formation of Gold–Copper Tin Sulphide Hybrid Nanostructures
- Peristaltic Motion of a non-Newtonian Nanofluid in an Asymmetric Channel
- An Analysis of Peristaltic Flow of Finitely Extendable Nonlinear Elastic- Peterlin Fluid in Two-Dimensional Planar Channel and Axisymmetric Tube
- Application of Rabinowitsch Fluid Model in Peristalsis
- Structural, Stabilities, and Electronic Properties of Bimetallic Mg2-doped Silicon Clusters
- Group Invariant Solutions and Conservation Laws of the Fornberg– Whitham Equation
- Investigations of the Thermal Shifts and Electron–Phonon Coupling Parameters of R1 and R2 Lines for Cr3+-doped Forsterite
Artikel in diesem Heft
- An Investigation on the Fine Structure Levels in the Ground State Configuration for the Antimony Anion
- Ab Initio Calculations of Structural, Electronic, and Mechanical Stability Properties of Magnesium Sulfide
- A Counterpart of the Wadati–Konno–Ichikawa Soliton Hierarchy Associated with so(3,R)
- Physics and Picasso
- Exact Solution for Peristaltic Transport of a Micropolar Fluid in a Channel with Convective Boundary Conditions and Heat Source/Sink
- Investigation of New Ionic Plastic Crystals in Tetraalkylammonium Tetrabuthylborate
- New Rational Homoclinic Solution and Rogue Wave Solution for the Coupled Nonlinear Schrödinger Equation
- Synthesis and Shape Control of Copper Tin Sulphide Nanocrystals and Formation of Gold–Copper Tin Sulphide Hybrid Nanostructures
- Peristaltic Motion of a non-Newtonian Nanofluid in an Asymmetric Channel
- An Analysis of Peristaltic Flow of Finitely Extendable Nonlinear Elastic- Peterlin Fluid in Two-Dimensional Planar Channel and Axisymmetric Tube
- Application of Rabinowitsch Fluid Model in Peristalsis
- Structural, Stabilities, and Electronic Properties of Bimetallic Mg2-doped Silicon Clusters
- Group Invariant Solutions and Conservation Laws of the Fornberg– Whitham Equation
- Investigations of the Thermal Shifts and Electron–Phonon Coupling Parameters of R1 and R2 Lines for Cr3+-doped Forsterite