This paper investigates the peristaltic transport of an incompressible micropolar fluid in an asymmetric channel with heat source/sink and convective boundary conditions. Mathematical formulation is completed in a wave frame of reference. Long wavelength and low Reynolds number approach is adopted. The solutions for velocity, microrotation component, axial pressure gradient, temperature, stream function, and pressure rise over a wavelength are obtained. Velocity and temperature distributions are analyzed for different parameters of interest
Received: 2013-12-11
Revised: 2014-3-19
Published Online: 2014-6-2
Published in Print: 2014-9-1
© 1946 – 2014: Verlag der Zeitschrift für Naturforschung
You are currently not able to access this content.
You are currently not able to access this content.
Articles in the same Issue
- An Investigation on the Fine Structure Levels in the Ground State Configuration for the Antimony Anion
- Ab Initio Calculations of Structural, Electronic, and Mechanical Stability Properties of Magnesium Sulfide
- A Counterpart of the Wadati–Konno–Ichikawa Soliton Hierarchy Associated with so(3,R)
- Physics and Picasso
- Exact Solution for Peristaltic Transport of a Micropolar Fluid in a Channel with Convective Boundary Conditions and Heat Source/Sink
- Investigation of New Ionic Plastic Crystals in Tetraalkylammonium Tetrabuthylborate
- New Rational Homoclinic Solution and Rogue Wave Solution for the Coupled Nonlinear Schrödinger Equation
- Synthesis and Shape Control of Copper Tin Sulphide Nanocrystals and Formation of Gold–Copper Tin Sulphide Hybrid Nanostructures
- Peristaltic Motion of a non-Newtonian Nanofluid in an Asymmetric Channel
- An Analysis of Peristaltic Flow of Finitely Extendable Nonlinear Elastic- Peterlin Fluid in Two-Dimensional Planar Channel and Axisymmetric Tube
- Application of Rabinowitsch Fluid Model in Peristalsis
- Structural, Stabilities, and Electronic Properties of Bimetallic Mg2-doped Silicon Clusters
- Group Invariant Solutions and Conservation Laws of the Fornberg– Whitham Equation
- Investigations of the Thermal Shifts and Electron–Phonon Coupling Parameters of R1 and R2 Lines for Cr3+-doped Forsterite
Articles in the same Issue
- An Investigation on the Fine Structure Levels in the Ground State Configuration for the Antimony Anion
- Ab Initio Calculations of Structural, Electronic, and Mechanical Stability Properties of Magnesium Sulfide
- A Counterpart of the Wadati–Konno–Ichikawa Soliton Hierarchy Associated with so(3,R)
- Physics and Picasso
- Exact Solution for Peristaltic Transport of a Micropolar Fluid in a Channel with Convective Boundary Conditions and Heat Source/Sink
- Investigation of New Ionic Plastic Crystals in Tetraalkylammonium Tetrabuthylborate
- New Rational Homoclinic Solution and Rogue Wave Solution for the Coupled Nonlinear Schrödinger Equation
- Synthesis and Shape Control of Copper Tin Sulphide Nanocrystals and Formation of Gold–Copper Tin Sulphide Hybrid Nanostructures
- Peristaltic Motion of a non-Newtonian Nanofluid in an Asymmetric Channel
- An Analysis of Peristaltic Flow of Finitely Extendable Nonlinear Elastic- Peterlin Fluid in Two-Dimensional Planar Channel and Axisymmetric Tube
- Application of Rabinowitsch Fluid Model in Peristalsis
- Structural, Stabilities, and Electronic Properties of Bimetallic Mg2-doped Silicon Clusters
- Group Invariant Solutions and Conservation Laws of the Fornberg– Whitham Equation
- Investigations of the Thermal Shifts and Electron–Phonon Coupling Parameters of R1 and R2 Lines for Cr3+-doped Forsterite