Startseite Elevated temperature friction and wear behavior of SiC-reinforced copper matrix composites
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Elevated temperature friction and wear behavior of SiC-reinforced copper matrix composites

  • Yongzhong Zhan EMAIL logo und Guoding Zhang
Veröffentlicht/Copyright: 26. Januar 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Copper matrix composites reinforced with 10 vol.% SiC particles were fabricated by a powder metallurgy method. The influence of environmental temperature on friction and wear behavior was studied in the temperature range 25– 390 °C. The incorporation of SiC particles improved the wear resistance at elevated temperature and effectively delayed the occurrence of severe wear at about 100 °C. A compact glaze layer consisted of comminuted SiC particles, fine oxides and Cu, was formed on the worn surface of the SiC/Cu composite. The protective effect of this layer improved the wear resistance of the sliding pair at high temperature. At mild wear region, the detachment of glaze layer was the primary wear mechanism of the SiC/Cu composite. When the environmental temperature was high enough for the subsurface materials to flow over the residual glaze layer, adhesive wear occurred and resulted in rapid failure of the tribological system.


Dr. Yongzhong Zhan Institute of Materials Science School of Physics Science and Engineering Technology Guangxi University Nanning, Guangxi, 530004, P. R. China Tel.: +86 771 323 3530 Fax: +86 771 323 3530

References

[1] F.A. Girot, J.M. Quenisset, R. Naslin: Comp. Sci. Tech. 30 (1989) 155.10.1016/0266-3538(87)90007-8Suche in Google Scholar

[2] A.L. Geiger, J.A. Walker: J. Min. Met. Mater. Soc. 42 (1991) 8.10.1007/BF03221097Suche in Google Scholar

[3] F.M. Hosking, F. Folgarportillo, R. Wunderlin, R. Mehrabian: J. Mater. Sci. 17 (1982) 477.10.1007/BF00591483Suche in Google Scholar

[4] J.E. Allison, G.S. Cole: J. Metals 45 (1993) 19.Suche in Google Scholar

[5] M. Noguchi, K. Fukizawa: Adv. Mater. Process. 143 (1993) 20.Suche in Google Scholar

[6] H. Zheng, J. Wang, W. Tian, J. Wang: Elec. Weld. Mach. 16 (1997) 38.Suche in Google Scholar

[7] R.L. Deuis, C. Subramanian, J.M. Yellup: Comp. Sci. Tech. 57 (1997) 415.10.1016/S0266-3538(96)00167-4Suche in Google Scholar

[8] B. Venkataraman, G. Sundararajan: Acta Mater. 44 (1996) 451.10.1016/1359-6454(95)00217-0Suche in Google Scholar

[9] J. Zhang, A.T. Alpas: Acta Mater. 45 (1997) 513.10.1016/S1359-6454(96)00191-7Suche in Google Scholar

[10] F.H. Stott: Tribol. Inter. 35 (2002) 489.10.1016/S0301-679X(02)00041-5Suche in Google Scholar

[11] J. Jiang, F.H. Stott, M.M. Stack: Wear 181–183 (1995) 20.10.1016/0043-1648(95)90004-7Suche in Google Scholar

[12] J.P. Tu, X.H. Jie, Z.Y. Mao, M. Matsumura: Tribol. Inter. 31 (1998) 347.10.1016/S0301-679X(98)00039-5Suche in Google Scholar

[13] K. Li, W. Li, X. Zhao, M. Tu: Chengdu University of Science and Technology, China, personal communications, 1992.Suche in Google Scholar

[14] M.A. Martinez, A. Martin, J. Lorca: Scripta Metall. Mater. 28 (1993) 207.10.1016/0956-716X(93)90564-9Suche in Google Scholar

[15] J. Singh, A.T. Alpas: Metall. Mater. Trans. A 27 (1996) 3135.10.1007/BF02663864Suche in Google Scholar

Received: 2004-03-04
Accepted: 2004-06-17
Published Online: 2022-01-26

© 2004 Carl Hanser Verlag, München

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/ijmr-2004-0189/pdf
Button zum nach oben scrollen