Home Technology Progress in the preparation of cross-sectional TEM specimens by ion-beam thinning
Article
Licensed
Unlicensed Requires Authentication

Progress in the preparation of cross-sectional TEM specimens by ion-beam thinning

  • Adolf Strecker , Ute Bäder , Marion Kelsch , Ute Salzberger , Maria Sycha , Min Gao , Gunther Richter and Klaus van Benthem EMAIL logo
Published/Copyright: January 11, 2022
Become an author with De Gruyter Brill

Abstract

In transmission electron microscopy (TEM), often the preparation of samples is the most critical part. Specimens have to have disk geometries of 3 mm diameter laterally, and they have to be transparent for the electron beam vertically. Therefore, a specimen thickness in the range of some 1 – 10 nm has to be achieved by the preparation process. While shrinking the specimen dimensions, care has to be taken to recover the materials properties in the nm-regime. We report and shortly discuss some TEM specimen preparation techniques mainly used in the Stuttgart TEM specimen preparation laboratory. Furthermore, we demonstrate how more advanced techniques lead to a more reliable preparation of weakly-bonded metal/SrTiO3 interfaces. In addition, the advantage of low-voltage ion-milling is demonstrated by a case study for bulk SrTiO3. As a result, low-voltage ion polishing as a final step in the TEM specimen preparation by conventional ion-thinning turns out to significantly increase the specimen quality. In turn, the interpretation of high-resolution TEM micrographs and electron energy-loss near-edge structures becomes much more straightforward.


Dr. K. van Benthem Max-Planck-Institut für Metallforschung Heisenbergstr. 3, 70569 Stuttgart, Germany Tel.: +49 711 689 3686 Fax: +49 711 689 3522
Dedicated to Prof. Dr. Dr. h. c. Manfred Rühle on the occasion of his 65th birthday

Funding statement: The authors gratefully acknowledge Prof. M. Rühle for his strong support and interest in developing new preparation techniques and machines. Thanks are also due to Dr. C. Scheu for providing some ELNES results, as well as to her, Dr. N.Y. Jin-Phillipp, and Dr. W. Sigle for fruitful discussions and carefully reading the manuscript. We appreciate helpful comments of the referee.

References

[1] L. Reimer: Transmission Electron Microscopy, Springer, Berlin, Heidelberg, New York (1997).10.1007/978-3-662-14824-2Search in Google Scholar

[2] D.B. Williams, C.B. Carter: Transmission Electron Microscopy, Plenum Press, New York, London (1996).10.1007/978-1-4757-2519-3Search in Google Scholar

[3] R.F. Egerton: Electron Energy Loss Spectroscopy in the Electron Microscope, Plenum Press, New York (1996).10.1007/978-1-4757-5099-7Search in Google Scholar

[4] M. Rühle, B. Kraus, A. Strecker, D. Waidelich: Adv. Ceramics 12 (1984) 256.Search in Google Scholar

[5] A. Dietzel, A. Jakubowicz, R.F. Broom, in: Proceedings of Microscopy of Semiconducting Materials, A.G. Cullis, A.E. Staton-Bevan (Eds.), IOP Publishing, Oxford (1995) 583.Search in Google Scholar

[6] J.F. Walker, J.C. Reiner, C. Solenthaler, in: As Ref. [5], p. 629.Search in Google Scholar

[7] J. Marien, J.M. Plitzko, R. Spolenak, R.-M. Keller, J. Mayer: J. Microscopy 194 (1999) 71.10.1046/j.1365-2818.1999.00476.xSearch in Google Scholar

[8] R. Spolenak, B. Heiland, C. Witt, R.-M. Keller, P. Muellner, E. Arzt: Prakt. Metallogr. Sonderband 30 (1999) 229.Search in Google Scholar

[9] A. Barna, B. Pecz, M. Menyhard: Ultramicroscopy 70 (1998) 161.10.1016/S0304-3991(97)00120-4Search in Google Scholar

[10] A. Strecker, J. Mayer, B. Baretzky, U. Eigenthaler, Th. Gemming, R. Schweinfest, M. Rühle: J. Microscopy 48 (1999) 235.10.1093/oxfordjournals.jmicro.a023673Search in Google Scholar

[11] A. Strecker, U. Salzberger, J. Mayer: Prakt. Metallogr. 30 (1993) 482.10.1515/pm-1993-301002Search in Google Scholar

[12] PJ. Goodhew, in: Practical Methods in Electron Microscopy, M. Glauert (ed.), Elsevier, New York (1985).Search in Google Scholar

[13] U. Helmersson, J.E. Sundgren: University of Linköping, Ph. D. Theses (1986).Search in Google Scholar

[14] S.B. Newcomb, C.S. Baxter, E.G. Bithell: Inst. Phys. Conf. Ser. 93 (1988) 43.Search in Google Scholar

[15] R.D. Heidenreich: J. Appl. Phys. 20 (1949) 993.10.1063/1.1698264Search in Google Scholar

[16] L. Medard, D.A. Jacquet, R. Sarlorius: Rev. Mat. 46 (1949) 549.Search in Google Scholar

[17] M.E. Getter, L. Ornstein: Phys. Techn. in Biol. Res. 3 (1956) 627.Search in Google Scholar

[18] L.-Y. Wei, T. Li: Microscopy Research and Technique 36 (1997) 380.10.1002/(SICI)1097-0029(19970301)36:5<380::AID-JEMT7>3.0.CO;2-PSearch in Google Scholar

[19] L.C. Sawyer, D.T. Grubb: in: Polymer Microscopy, Chapman and Hall, New York (1987).10.1007/978-94-009-3139-8Search in Google Scholar

[20] T.F. Malis: Microbeam Analysis-1989, San Francisco Press, San Francisco CA (1989).Search in Google Scholar

[21] R. Anderson, S.J. Klepeis, in: Mater. Res. Soc. Symposium Proceedings, R.M. Anderson, S.D. Walck (Eds.), Materials Research Society, Pittsburgh PA (1997) 187.Search in Google Scholar

[22] K. van Benthem: Ph. D. Thesis, Universität Stuttgart, Stuttgart, http://elib.uni-stuttgart.de/opus/volltexte/2002/1200 (2002).Search in Google Scholar

[23] E. Tchernychova: Personal communications (2002).Search in Google Scholar

[24] A. Strecker, U. Bäder, U. Salzberger, M. Sycha, M. Rühle, in: Proc. Dreiländertagung für Elektronenmikroskopie (2001) 144.Search in Google Scholar

[25] K. van Benthem, C. Scheu, W. Sigle, M. Rühle: Z. Metallkd. 93 (2002) 5.Search in Google Scholar

[26] A. Strecker, U. Bäder, K. van Benthem, S. Krämer, G. Richter, U. Salzberger, M. Sycha, A. Zern, M. Rühle, in: As Ref. [24], 144.Search in Google Scholar

[27] N.Y. Jin–Phillipp, M. Kelsch, F. Phillipp, M. Rühle, in: Microscopy & Microanalysis 2002, E. Voelkl, D. Piston, R. Gauvin, A.J. Lockley, G.W. Bailey, S. McKeran (Eds.), Cambridge University Press (2002).Search in Google Scholar

[28] C. Scheu, M. Gao, K. van Benthem, S. Tsukimoto, S. Schmidt, W. Sigle, G. Richter, J. Thomas: J. Microscopy, in press.Search in Google Scholar

[29] S.D. Berger, J.M. Macaulay, L.M. Brown: Phil. Mag. Lett. 56 (1987) 179.10.1080/09500838708214705Search in Google Scholar

[30] P. Rez, J.K. Weiss, D.L. Medlin, D.G. Howitt: Microsc. Microanal. Microstruct. 6 (1995) 433.10.1051/mmm:1995133Search in Google Scholar

[31] D.A. Muller, in: Microscopy and Microanalysis, E. Voelkl, D. Piston, R. Gauvin, A.J. Lockley, G.W. Bailey, S. McKeran (Eds.), Cambridge University Press (2002).Search in Google Scholar

Received: 2002-10-20
Published Online: 2022-01-11

© 2003 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Editorial
  4. Articles/Aufsätze
  5. The role of oxidation-induced cavities on the failure of the thermally grown oxide on binary β-NiAl alloys
  6. Phase stability of Y + Gd co-doped zirconia
  7. Mechanisms governing the distortion of alumina-forming alloys upon cyclic oxidation
  8. High-temperature oxidation of FeCrAl alloys: the effect of Mg incorporation into the alumina scale
  9. Nonlinear dielectric properties at oxide grain boundaries
  10. TEM observations of singular grain boundaries and their roughening transition in TiO2-excess BaTiO3
  11. Processing of dense MgO substrates for high-temperature superconductors
  12. Microwave-induced crystallization of polysilazane-derived silicon carbonitride
  13. Schottky barrier formation in liquid-phase-sintered silicon carbide
  14. SrTiO3: a model electroceramic
  15. Optical properties and electronic structure of oxidized and reduced single-crystal strontium titanate
  16. Spreading of liquid Ag and Ag–Mo alloys on molybdenum substrates
  17. Nanoalloying in mixed AgmAun nanowires
  18. Never ending saga of a simple boundary
  19. Comparison of interfacial chemistry at Cu/α-alumina and Cu/γ-alumina interfaces
  20. Microstructure of Cu2O/Si interfaces, made by epitaxial electrodeposition
  21. Metal/oxide interfaces and their reaction with hydrogen
  22. Amorphous films at metal/ceramic interfaces
  23. Some thoughts on source monochromation and the implications for electron energy loss spectroscopy
  24. Determination of the contrast transfer function by analysing diffractograms of thin amorphous foils
  25. Progress in the preparation of cross-sectional TEM specimens by ion-beam thinning
  26. Quantification of interfacial segregation by analytical electron microscopy
  27. Quantification of elemental segregation to lath and grain boundaries in low-alloy steel by STEM X-ray mapping combined with the ζ-factor method
  28. Microstructure of Al/Ti metallization layers
  29. Connectivity of CSL grain boundaries and the role of deviations from exact coincidence
  30. Effect of laser shock processing on the microstructure and mechanical properties of pure Cu
  31. Growth and microstructure of iron nitride layers and pore formation in ε-Fe3N
  32. Phase diagram of the Al–Cu–Fe quasicrystal-forming alloy system
  33. Notifications/Mitteilungen
  34. Personal/Personelles
  35. Gesellschaftsnachricht
  36. International Conferences
Downloaded on 6.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/ijmr-2003-0054/pdf
Scroll to top button