Abstract
Liquid-phase-sintered SiC materials, all doped with 3 vol.% YAG (Y3Al5O12) and sintered under identical conditions but processed in different furnaces (laboratory vs. industrial furnaces), revealed a variation in electrical resistivity of five orders of magnitude (102 vs.107 Ωcm). It was expected that, due to different cooling rates, different interface structures had evolved that strongly affected electrical resistivity, i. e., changes in intergranular film chemistry and corresponding thickness. In order to verify this hypothesis, the materials were characterized employing various techniques. High-resolution transmission electron microscopy of SiC interfaces revealed an unexpected result: clean interfaces for all samples. Elemental analysis confirmed yttrium and aluminum segregation at grain boundaries. Electron holography and Fresnel-fringe imaging revealed a change in mean inner potential across SiC interfaces. It is concluded that the segregation of acceptor ions at interfaces lowers the grain-boundary Fermi energy, resulting in the formation of potential barriers (Schottky barriers) along SiC interfaces, which in turn strongly affect electrical resistivity of SiC polycrystals.
Funding statement: We are greatly indebted to Prof. G. Ziegler, University of Bayreuth for his continuous support throughout this work. Moreover, we would like to express our sincere thanks to Drs. S. L. Sigl and K. A. Schwetz, Wacker Ceramics, Kempten, Germany, for providing these interesting materials and for their financial support for F. S. Dr. M. Lehmann and Prof. H. Lichte, Technical University Dresden, Germany, are gratefully acknowledged for their strong support during the electron holography experiments.
References
[1] E.G. Acheson: U. S. Patent Nos. 492,767; 615,648 (1893).Search in Google Scholar
[2] S. Prochazka, in: J.J. Burke, A.E. Gorum, R.M. Katz (Eds.), Proc. Conf. on Ceramics for High Performance Applications, Brook Hill Publ. Co., New York (1975) 7.Search in Google Scholar
[3] M. Omori, H. Takei: J. Am. Ceram. Soc. 65 (1982) C92.10.1111/j.1151-2916.1982.tb10460.xSearch in Google Scholar
[4] M. Omori, H. Takei: U. S. Patent No. 4,502,983, (1985).Search in Google Scholar
[5] L.S. Sigl, H.-J. Kleebe: J. Am. Ceram. Soc. 76 (1993) 77310.1111/j.1151-2916.1993.tb03677.xSearch in Google Scholar
[6] J.L. Huang, A.C. Hurford, R.A. Cutler, A.V. Virkar: J. Mater. Sci. 21 (1986) 1448.10.1007/BF00553287Search in Google Scholar
[7] K. Negita: J. Am. Ceram. Soc. 69 (1986) C-308.10.1111/j.1151-2916.1986.tb07398.xSearch in Google Scholar
[8] M.A. Mulla, V.D. Krstic: Acta Metall. Mater. 42 (1994) 303.10.1016/0956-7151(94)90072-8Search in Google Scholar
[9] N.P. Padture, B.R. Lawn: J. Am. Ceram. Soc. 77 (1994) 2518.10.1111/j.1151-2916.1994.tb04637.xSearch in Google Scholar
[10] V.V. Pujar, R.P. Jensen, N.P. Padture: J. Mater. Sci. Lett. 19 (2000) 1011.10.1023/A:1006753213286Search in Google Scholar
[11] Y. Murakami, H. Yamamoto: J. Ceram. Soc. Jpn. 105 (1997) 2110.2109/jcersj.105.21Search in Google Scholar
[12] H.-W. Jun, H.-W. Lee, G.-H. Kim, H. Song, B.-H. Kim: Ceram. Eng. Sci. Proc. 18 (1997) 487.10.1002/9780470294444.ch57Search in Google Scholar
[13] Y.-W. Kim, M. Mitomo, J. Am. Ceram. Soc. 82 (1999) 2731.10.1111/j.1151-2916.1999.tb02149.xSearch in Google Scholar
[14] T. Nagano, K. Kanedo, G.D. Zhan, M. Mitomo: J. Am. Ceram. Soc. 83 (2000) 2497.10.1111/j.1151-2916.2000.tb01581.xSearch in Google Scholar
[15] M. Mitomo, Y.-W. Kim, H. Hirotsuru: J. Mater. Res. 11 (1996) 1601.10.1557/JMR.1996.0200Search in Google Scholar
[16] N.P. Padture: J. Am. Ceram. Soc. 77 (1994) 519.10.1111/j.1151-2916.1994.tb07024.xSearch in Google Scholar
[17] S.K. Lee, Y.C. Kim, C.H. Kim: J. Mater. Sci. 29 (1994) 5321.10.1007/BF01171542Search in Google Scholar
[18] Y.-W. Kim, M. Mitomo, H. Hirotsuru: J. Am. Ceram. Soc. 80 (1997) 99.10.1111/j.1151-2916.1997.tb02796.xSearch in Google Scholar
[19] W.J. Moberly-Chan, L.C. DeJonghe: Acta Met. 46 (1998) 2471.10.1016/S1359-6454(98)80030-XSearch in Google Scholar
[20] S.A. Deshpande, T. Bhatia, H. Xu, N.P. Padture, A.L. Ortiz, F.L. Cumbrera: J. Am. Ceram. Soc. 84 (2001) 1585.10.1111/j.1151-2916.2001.tb00881.xSearch in Google Scholar
[21] R.R. Lee, W.C. Wei: Ceram. Eng. Sci. Proc. 11 (1990) 1094.10.1002/9780470313008.ch39Search in Google Scholar
[22] H.-J. Kleebe: J. Eur. Ceram. Soc. 10 (1992) 151.10.1016/0955-2219(92)90028-CSearch in Google Scholar
[23] M. Keppeler, H.-G. Reichert, J.M. Broadley, G. Thurn, I. Wiedmann, F. Aldinger: J. Eur. Ceram. Soc. 18 (1998) 521.10.1016/S0955-2219(97)00163-5Search in Google Scholar
[24] S.G. Lee, Y.-W. Kim, M. Mitomo: J. Am. Ceram. Soc. 84 (2001) 1347.10.1111/j.1151-2916.2001.tb00840.xSearch in Google Scholar
[25] G. Rixecker, I. Wiedmann, A. Rosinus, F. Aldinger: J. Eur. Ceram. Soc. 21 (2001) 1013.10.1016/S0955-2219(00)00317-4Search in Google Scholar
[26] Y.-W. Kim, M. Mitomo, T. Nishimura: J. Am. Ceram. Soc. 85 (2002) 1007.10.1111/j.1151-2916.2002.tb00211.xSearch in Google Scholar
[27] J.J. Cao, W.J. Moberly-Chan, L.C. De Jonghe, C.J. Gilbert, R.O. Ritchie: J. Am. Ceram. Soc. 79 (1996) 461.10.1111/j.1151-2916.1996.tb08145.xSearch in Google Scholar
[28] R.E. Loehman: J. Am. Ceram. Soc. 62 (1979) 491.10.1111/j.1151-2916.1979.tb19113.xSearch in Google Scholar
[29] S. Sakka: J. Non-Cryst. Solids 181 (1995) 215.10.1016/S0022-3093(94)00514-1Search in Google Scholar
[30] G. Pezzotti, H. Nishimura, K. Ota, H.-J. Kleebe: J. Am. Ceram. Soc. 84 (2001) 2371.10.1111/j.1151-2916.2001.tb01017.xSearch in Google Scholar
[31] H.-J. Kleebe, M. Rühle: Mat. Res. Soc. Symp. Proc. 238 (1992) 859.10.1557/PROC-238-859Search in Google Scholar
[32] H.-J. Kleebe, M.J. Hoffmann, M. Rühle: Z. Metallkd. 83 (1992) 610.Search in Google Scholar
[33] H.-J. Kleebe, M.K. Cinibulk: J. Mater. Sci. Lett. 12 (1993) 70.10.1007/BF00241851Search in Google Scholar
[34] I. Tanaka, K. Igashira, H.-J. Kleebe, M. Rühle: J. Am. Ceram. Soc. 77 (1994)275.10.1111/j.1151-2916.1994.tb06990.xSearch in Google Scholar
[35] P.O. Robert, J. Fouletier, L. Menneron: J. Eur. Ceram. Soc. 19 (1999) 875.10.1016/S0955-2219(98)00335-5Search in Google Scholar
[36] J.R. MacDonald: Solid State Ionics 13 (1984) 147.10.1016/0167-2738(84)90049-3Search in Google Scholar
[37] R.L. Hurt, J.R. MacDonald: Solid State Ionics 20 (1986) 111.10.1016/0167-2738(86)90018-4Search in Google Scholar
[38] D.R. Clarke: J. Am. Ceram. Soc. 70 (1987) 15.10.1111/j.1151-2916.1987.tb04846.xSearch in Google Scholar
[39] H.-J. Kleebe: J. Eur. Ceram. Soc. 10 (1992) 151.10.1016/0955-2219(92)90028-CSearch in Google Scholar
[40] L.F.L. Falk: J. Eur. Ceram. Soc. 17 (1997) 983.10.1016/S0955-2219(96)00198-7Search in Google Scholar
[41] R.W. Carpenter, W. Braue, R.A. Cutler: J. Mat. Res. 6 (1991) 1937.10.1557/JMR.1991.1937Search in Google Scholar
[42] W. J. Moberly-Chan, L.C. De Jonghe: Acta. Met. 46 (1998) 2471.10.1016/S1359-6454(98)80030-XSearch in Google Scholar
[43] S. Turan, K.M. Knowles: Mat. Sci. Forum 294–96 (1999) 313.Search in Google Scholar
[44] D.R. Clarke: Ultramicroscopy 4 (1979) 33.10.1016/0304-3991(79)90006-8Search in Google Scholar
[45] O.L. Krivanek, T.M. Shaw, G. Thomas: J. Appl. Phys. 50 (1979) 4223.10.1063/1.326453Search in Google Scholar
[46] J.N. Ness, W.M. Stobbs, T.F. Page: Phil. Mag. A 54 (1986) 679.10.1080/01418618608244026Search in Google Scholar
[47] M.K. Cinibulk, H.-J. Kleebe, M. Rühle: J. Am. Ceram. Soc. 76 (1993) 426.10.1111/j.1151-2916.1993.tb03801.xSearch in Google Scholar
[48] Q. Jin, D.S. Wilkinson, G.C. Weatherly: J. Am. Ceram. Soc. 18 (1998) 2281.10.1016/S0955-2219(98)00140-XSearch in Google Scholar
[49] L. Reimer: 2nd Edition, Springer-Verlag, Berlin (1989) 63.Search in Google Scholar
[50] G. Pezzotti, H.-J. Kleebe, K. Ota: J. Am. Ceram. Soc. 81 (1998) 3293.10.1111/j.1151-2916.1998.tb02770.xSearch in Google Scholar
[51] J.I. Goldstein, D.E. Newbury, P. Echlin, D.C. Joy, A.D. Romig, Jr., C.E. Lyman, C. Fiori, E. Lifshin: 2nd Edition, Plenum Press, New York (1992).Search in Google Scholar
[52] D. Gabor: Proc. Phys. Soc. A, 197 (1949) 454.Search in Google Scholar
[53] G. Möllenstedt, H. Düker: Z. für Physik 145 (1956) 377.10.1007/BF01326780Search in Google Scholar
[54] H. Lichte: Habilitationsschrift, Universität Tübingen, Germany (1987).Search in Google Scholar
[55] T. Troffer: Phys. Stat. Sol. (a) 162 (1997) 277.10.1002/1521-396X(199707)162:1<277::AID-PSSA277>3.0.CO;2-CSearch in Google Scholar
[56] M. Gajdardziska–Josifovska, A.H. Carim, in: Introduction to Electron Holography, Völkl, L.F. Allard, D.C. Joy (Eds.), Kluwer Academic Press, New York (1999) 267.10.1007/978-1-4615-4817-1_12Search in Google Scholar
[57] V. Ravikumar, R.P. Rodrigues, V.P. Dravid: Phys. Rev. Lett. 75 (1995) 4063.10.1103/PhysRevLett.75.4063Search in Google Scholar
[58] D.R. Clarke: J. Am. Ceram. Soc. 82 (1999) 485.10.1111/j.1151-2916.1999.tb01793.xSearch in Google Scholar
[59] V. Ravikumar, R.P. Rodrigues, V.P. Dravid: J. Am. Ceram. Soc. 80 (1997) 1131.10.1111/j.1151-2916.1997.tb02955.xSearch in Google Scholar
[60] G. Pike, in: R.W. Cahn, E.J. Kramer, P. Haasen (Eds.), Material Science and Technology, VCH Verlagsgesellschaft, Weinheim, Germany, (1994) 731.Search in Google Scholar
[61] F.M. Ross, W.M. Stobbs: Phil. Mag. 63 (1991) 37.10.1080/01418619108204592Search in Google Scholar
© 2003 Carl Hanser Verlag, München
Articles in the same Issue
- Frontmatter
- Editorial
- Editorial
- Articles/Aufsätze
- The role of oxidation-induced cavities on the failure of the thermally grown oxide on binary β-NiAl alloys
- Phase stability of Y + Gd co-doped zirconia
- Mechanisms governing the distortion of alumina-forming alloys upon cyclic oxidation
- High-temperature oxidation of FeCrAl alloys: the effect of Mg incorporation into the alumina scale
- Nonlinear dielectric properties at oxide grain boundaries
- TEM observations of singular grain boundaries and their roughening transition in TiO2-excess BaTiO3
- Processing of dense MgO substrates for high-temperature superconductors
- Microwave-induced crystallization of polysilazane-derived silicon carbonitride
- Schottky barrier formation in liquid-phase-sintered silicon carbide
- SrTiO3: a model electroceramic
- Optical properties and electronic structure of oxidized and reduced single-crystal strontium titanate
- Spreading of liquid Ag and Ag–Mo alloys on molybdenum substrates
- Nanoalloying in mixed AgmAun nanowires
- Never ending saga of a simple boundary
- Comparison of interfacial chemistry at Cu/α-alumina and Cu/γ-alumina interfaces
- Microstructure of Cu2O/Si interfaces, made by epitaxial electrodeposition
- Metal/oxide interfaces and their reaction with hydrogen
- Amorphous films at metal/ceramic interfaces
- Some thoughts on source monochromation and the implications for electron energy loss spectroscopy
- Determination of the contrast transfer function by analysing diffractograms of thin amorphous foils
- Progress in the preparation of cross-sectional TEM specimens by ion-beam thinning
- Quantification of interfacial segregation by analytical electron microscopy
- Quantification of elemental segregation to lath and grain boundaries in low-alloy steel by STEM X-ray mapping combined with the ζ-factor method
- Microstructure of Al/Ti metallization layers
- Connectivity of CSL grain boundaries and the role of deviations from exact coincidence
- Effect of laser shock processing on the microstructure and mechanical properties of pure Cu
- Growth and microstructure of iron nitride layers and pore formation in ε-Fe3N
- Phase diagram of the Al–Cu–Fe quasicrystal-forming alloy system
- Notifications/Mitteilungen
- Personal/Personelles
- Gesellschaftsnachricht
- International Conferences
Articles in the same Issue
- Frontmatter
- Editorial
- Editorial
- Articles/Aufsätze
- The role of oxidation-induced cavities on the failure of the thermally grown oxide on binary β-NiAl alloys
- Phase stability of Y + Gd co-doped zirconia
- Mechanisms governing the distortion of alumina-forming alloys upon cyclic oxidation
- High-temperature oxidation of FeCrAl alloys: the effect of Mg incorporation into the alumina scale
- Nonlinear dielectric properties at oxide grain boundaries
- TEM observations of singular grain boundaries and their roughening transition in TiO2-excess BaTiO3
- Processing of dense MgO substrates for high-temperature superconductors
- Microwave-induced crystallization of polysilazane-derived silicon carbonitride
- Schottky barrier formation in liquid-phase-sintered silicon carbide
- SrTiO3: a model electroceramic
- Optical properties and electronic structure of oxidized and reduced single-crystal strontium titanate
- Spreading of liquid Ag and Ag–Mo alloys on molybdenum substrates
- Nanoalloying in mixed AgmAun nanowires
- Never ending saga of a simple boundary
- Comparison of interfacial chemistry at Cu/α-alumina and Cu/γ-alumina interfaces
- Microstructure of Cu2O/Si interfaces, made by epitaxial electrodeposition
- Metal/oxide interfaces and their reaction with hydrogen
- Amorphous films at metal/ceramic interfaces
- Some thoughts on source monochromation and the implications for electron energy loss spectroscopy
- Determination of the contrast transfer function by analysing diffractograms of thin amorphous foils
- Progress in the preparation of cross-sectional TEM specimens by ion-beam thinning
- Quantification of interfacial segregation by analytical electron microscopy
- Quantification of elemental segregation to lath and grain boundaries in low-alloy steel by STEM X-ray mapping combined with the ζ-factor method
- Microstructure of Al/Ti metallization layers
- Connectivity of CSL grain boundaries and the role of deviations from exact coincidence
- Effect of laser shock processing on the microstructure and mechanical properties of pure Cu
- Growth and microstructure of iron nitride layers and pore formation in ε-Fe3N
- Phase diagram of the Al–Cu–Fe quasicrystal-forming alloy system
- Notifications/Mitteilungen
- Personal/Personelles
- Gesellschaftsnachricht
- International Conferences