Home Evaluation of Superplastic Formability of the AZ31 Magnesium Alloy
Article
Licensed
Unlicensed Requires Authentication

Evaluation of Superplastic Formability of the AZ31 Magnesium Alloy

  • Lung-Chuan Tsao , Chuen-Fuu Wu and Tung-Han Chuang EMAIL logo
Published/Copyright: January 8, 2022
Become an author with De Gruyter Brill

Abstract

The superplastic formability of the AZ31 magnesium alloy is evaluated in the temperature range between 300 and 525 °C under biaxial tensile stress through argon-blowing testing. During superplastic forming, the cellular precipitates originally existing in the as-received AZ31 alloy dissolve into solid solution. Superplastic deformation is found to play a part in the dissolution of these cellular precipitates. In the highly deformed specimens, two types of cavities are observed. After superplastic forming, the microhardness of this AZ31 alloy decreases distinctively. However, the corrosion behavior is improved in the case of deformed specimens when the number of cavities has not reached to a significant level. Both the decrease of microhardness and the increase of corrosion resistance can be attributed to the dissolution of cellular precipitates after superplastic forming.


Prof. Dr. T.H. Chuang Institute of Materials Science and Engineering National Taiwan University Taipei 106, Taiwan, R. O. C. Fax: +886 22 2363 4562

References

1 Nieh, T.G.; Wadsworth, J.; Sherby, O.D.: Superplasticity in Metals and Ceramics, Cambridge University Press (1997) 69.10.1017/CBO9780511525230Search in Google Scholar

2 Watanabe, H.; Mukai, T.; Kohzu, M.; Tanabe, S.; Higashi, K.: Acta mater. 47 (1999) 3753.10.1016/S1359-6454(99)00253-0Search in Google Scholar

3 Gjestland, H.; Nussbaum, G.; Regazzoni, G.; Lohne, O.; Banger, O.: Mater. Sci. Eng. A 134 (1991) 1197.10.1016/0921-5093(91)90954-LSearch in Google Scholar

4 Solberg, J.K.; Torhlep, J.; Banger, O.; Gjestland, H.: Mater. Sci. Eng. A 134 (1991) 1201.10.1016/0921-5093(91)90955-MSearch in Google Scholar

5 Mabuchi, M.; Ameyama, K.; Iwasaki, H.; Higashi, K.: Acta mater. 47 (1999) 2047.10.1016/S1359-6454(99)00094-4Search in Google Scholar

6 Karim, A.; Holt, D.L.; Backofen, W.A.: Trans. Metall. Soc. AIME 245 (1969) 1131.Search in Google Scholar

7 Tilman, M.M.; Neumaier, L. A.: Superplasticity in Commercial and Experimental Compositions of Magnesium Alloy Sheet, RI 8662, Bureau of Mines, U.S. Department of the Interior (1982).Search in Google Scholar

8 Takuda, H.; Fujimoto, H.; Hatta, N.: J. Mater. Process. Technol. 80–81 (1998) 513.Search in Google Scholar

9 Mwembela, A.; Konopleva, E.V.; Mcqueen, H.J.: Scripta mater. 37 (1997) 1789.10.1016/S1359-6462(97)00344-8Search in Google Scholar

10 Ragab, A.R.: Met. Technol. 10 (1983) 340.10.1179/030716983803291262Search in Google Scholar

11 Jiang, J.Q.; Bate, P.S.: Metall. Trans. A 27 (1996) 434.Search in Google Scholar

12 Chokshi, A.H.; Langdon, T.G.: Acta metall. 37 (1989) 715.10.1016/0001-6160(89)90255-1Search in Google Scholar

13 Kainer, K.U.; Mwembela, A.; Konopleva, E.V., in: B.L. Mordike; K.U. Kainer (eds.), Magnesium Alloys and Their Applications, Werkstoff-Informationsgesellschaft mbH, Wolfsburg, Germany, (1998) 369.Search in Google Scholar

14 Mcqueen, H.J.; Mwembela, A.; Konopleva, E.V.: As Ref. [13], p. 201.Search in Google Scholar

15 Ambat, R.; Aung, N.N.; Zhou, W.: Corrosion Sci. 42 (2000) 1433.10.1016/S0010-938X(99)00143-2Search in Google Scholar

Received: 2001-03-06
Published Online: 2022-01-08

© 2001 Carl Hanser Verlag, München

Downloaded on 17.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/ijmr-2001-0111/html
Scroll to top button