Startseite Change of Crystal Orientation in Straining and Dislocation Glide Systems
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Change of Crystal Orientation in Straining and Dislocation Glide Systems

  • Orlová Alena
Veröffentlicht/Copyright: 27. Dezember 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Copper single crystals subjected to compressive creep at 773 K changed the crystallographic orientation of their longitudinal direction, chosen as a direction of loading. In compressive deformation the change moves the longitudinal direction to the normal of the slip plane. This fact is utilized in the present paper to an investigation of the possible activity of dislocation slip systems on non-compact crystal planes. The results show that the average change of orientation can be interpreted well by an activity of compact 〈110〉 {111} slip systems. Local deviations from the average final orientation can indicate a non-compact glide but a connection with substructure misorientations is expected, too. There are microstructural indications of dislocation cross-slip to {100}, {110} and (probably) {131} non-compact slip planes.


A. Orlová Institute of Physics of Materials Academy of Sciences of the Czech Republic Žižkova 22 CZ-616 62 Brno, Czech Republic

  1. The work was supported by the Grant Agency of the Academy of Sciences of the Czech Republic under the grant No. A2041504.

Literature

1 Driver J. H.; Juul Jensen, D.; Hansen N.: Acta metall. mater. 42 (1997) 3105–3114.10.1016/0956-7151(94)90408-1Suche in Google Scholar

2 Theyssier, M. C.; Chenal, B.; Driver, J. H.; Hansen, N.: phys. stat. sol. (a) 149 (1995) 367–378.10.1002/pssa.2211490127Suche in Google Scholar

3 Kuhlmann-Wilsdorf, D.; Hansen, N.: Scripta metall. mater. 25 (1991) 1557.10.1016/0956-716X(91)90451-6Suche in Google Scholar

4 Liu, Q.; Hansen, N.: phys. stat. sol. (a) 149 (1995) 187–199.10.1002/pssa.2211490113Suche in Google Scholar

5 Hansen, N.; Hughes, D. A.: phys. stat. sol. (a) 149 (1995) 155–172.10.1002/pssa.2211490111Suche in Google Scholar

6 Wert, J. A.; Liu, Q.; Hansen, N.: Acta metall. mater. 45 (1997) 2565 – 2576.10.1016/S1359-6454(96)00348-5Suche in Google Scholar

7 Schmid, E.; Boas, W.: Plasticity of Crystals, Chapman and Hall Ltd., London (1950).Suche in Google Scholar

8 Orlová, A.: Z. Metallkd. 86 (1995) 719–725 and 726–731.Suche in Google Scholar

9 Bacroix, B.; Jonas, J. ].: Textures and Microstructures 8&9 (1988) 267–311.10.1155/TSM.8-9.267Suche in Google Scholar

10 Anongba, P.; Bonneville, J.; Verger-Gaugry, J. L.: Scripta metall. mater. 21 (1987) 777–782.10.1016/0036-9748(87)90321-8Suche in Google Scholar

11 Hirsch, P. B.; Howie, A.; Nicholson, R. B.; Pashley, D. W.; Whelan, M. J.: Electron Microscopy of Thin Crystals, Butterworths, London (1965).Suche in Google Scholar

12 von Mises, R.: Z. Angew. Math. Mech. 8 (1928) 161 –185 – cited from [14].10.1002/zamm.19280080302Suche in Google Scholar

13 Taylor, G. I.: J. Inst. Metals 62 (1938) 307–324 – cited from [14].Suche in Google Scholar

14 Chin, G. I.; Mammel, W. L.: Trans. Met. Soc. AIME 239 (1967) 1400–1405.Suche in Google Scholar

15 Orlová, A.: phys. stat. sol. (a) 150 (1995) 247–256.10.1002/pssa.2211500122Suche in Google Scholar

16 Anongba, P. N. B.; Bonneville, J.; Martin, J. L.: Acta metall. mater. 41 (1993) 2897–2906 and 2907–2922.10.1016/0956-7151(93)90105-2Suche in Google Scholar

17 Martin, ]. L.; Caillard, D.: Z. Metallkd. 84 (1993) 867–873.Suche in Google Scholar

18 Orlová, A.: Kovové Mater. 23 (1985) 751–760.Suche in Google Scholar

Received: 1997-03-03
Published Online: 2021-12-27

© 1998 Carl Hanser Verlag, München

Heruntergeladen am 16.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/ijmr-1998-0038/html?lang=de
Button zum nach oben scrollen