Fabrication of Poly Vinyl Acetate (PVAc) Nanofibers Using DMAC Solvent: Effect of Molecular Weight, Optimization by Taguchi DoE
-
S. Khanzadeh Borjak
, R. Rafee und M. S. Valipour
Abstract
This study experimentally investigated the effect of different molecular weights of Poly vinyl acetate (PVAc) on electrospinning ability of PVAc/DMAC sol-gels. The influences of polymer solution concentration and electrospinning process parameters (needle tip to collector distance, flow rate, and applied voltage) on the mean diameters of electrospun PVAc nanofibers were examined by design of the experiments based on the Taguchi method. Three levels were considered for each process factor as inputs for the Taguchi DoE technique. To characterize and optimize the mentioned parameters, Taguchi's L9 orthogonal design (four parameters, three levels) was used. The “smaller-the-better” approach was used to utilize the optimum production conditions based on the signal-to-noise (S/N) ratios. The results indicated that the polymer solution concentration was the most important parameter on the mean diameter of the nanofibers. The minimum nanofiber diameter at the optimum conditions was measured about 52 nm. In conclusion, the Taguchi DoE method was identified as an efficient technique to characterize and optimize the electrospinning process parameters to increase the robustness of nanofiber fabrication.
References
1 Abu-Saied, M. A., Khalil, K. A. and Al-Deyab, S. S., “Preparation and Characterization of Poly Vinyl Acetate Nanofiber Doping Copper Metal”, Int. J. Electrochem. Sci., 7, 2019–2027 (2012)Suche in Google Scholar
2 Afifi, A. M., Yamane, H. and Kimura, Y., “Effect of Polymer Molecular Weight on the Electrospinning of Polylactides in Entangled and Aligned Fiber Forms”, Sen'i Gakkaishi, 66, 35–42 (2010) 10.2115/Fiber.66.35Suche in Google Scholar
3 Ahmadian-Fard-Fini, S., Ghanbari, D., Amiri, O. and Salavati-Niasari, M., “Electro-Spinning of Cellulose Acetate Nanofibers/Fe/Carbon Dot as Photoluminescence Sensor for Mercury (II) and Lead (II) Ions”, Carbohydr. Polym., 229, 115428 (2020) 10.1016/J.Carbpol.2019.115428Suche in Google Scholar
4 Albetran, H., Dong, Y. and Low, I. M., “Characterization and Optimization of Electrospun TiO2/PVP Nanofibers Using Taguchi Design of Experiment Method”, J. Asian Ceram. Soc., 3, 292–300 (2015) 10.1016/J.Jascer.2015.05.001Suche in Google Scholar
5 Amini, N., Kalaee, M., Mazinani, S., Pilevar, S. and Ranaei-Siadat, S. O., “Morphological Optimization of Electrospun Polyacrylamide/Mwcnts Nanocomposite Nanofibers Using Taguchi's Experimental Design”, Int. J. Adv. Manuf. Technol., 69, 139–146 (2013) 10.1007/S00170-013-5006-XSuche in Google Scholar
6 Asmatulu, R., Khan, W. S.: Synthesis and Applications of Electrospun Nanofibers, Elsevier Science, Amsterdam, The Netherlands (2018) 10.1016/B978-0-12-813914-1.00001-8Suche in Google Scholar
7 Cao, W., Liu, Y., Ma, M. and Zhu, J, 2017). Facile Preparation of Robust and Superhydrophobic Materials for Self-Cleaning and Oil/Water Separation. Colloids and Surfaces A, 529(May), 18–25 (2017) 10.1016/J.Colsurfa.2017.05.064Suche in Google Scholar
8 Celep, G. K. and Dincer, K., “Optimization of Parameters for Electrospinning of Polyacrylonitrile Nanofibers By the Taguchi Method”, Int. Polym. Proc., 32, 508–514 (2017) 10.3139/217.3411Suche in Google Scholar
9 Deitzel, J. J. M., Kleinmeyer, J., Harris, D. and Beck Tan, N., “The Effect of Processing Variables on the Morphology of Electrospun Nanofibers and Textiles Nanofibers and Textiles”, Polymer, 42, 261–272 (2001) 10.1016/S0032-3861(00)00250-0Suche in Google Scholar
10 Dhanalakshmi, M., Lele, A. K. and Jog, J. P., “Electrospinning of Nylon11: Effect of Processing Parameters on Morphology and Microstructure”, Mater. Today Commun., 3, 141–148 (2015) 10.1016/J.Mtcomm.2015.01.002Suche in Google Scholar
11 Ding, W., Wei, S., Zhu, J., Chen, X. and Rutman, D., “Manipulated Electrospun PVA Nanofibers with Inexpensive Salts”, Macromol. Mater. Eng., 295, 958–965 (2010) 10.1002/Mame.201000188Suche in Google Scholar
12 Feng, L., Yang, M., Shi, X., Liu, Y., Wang, Y. and Qiang, X., “Copper-Based Superhydrophobic Materials with Long-Term Durability, Stability, Regenerability, and Self-Cleaning Property”, Colloids Surf., A, 508, 39–47 (2016) 10.1016/J.Colsurfa.2016.08.017Suche in Google Scholar
13 Fong, H., Chun, I. and Reneker, D. H., “Beaded Nanofibers Formed during Electrospinning”, Polymer, 40, 4585–4592 (1999) 10.1016/S0032-3861(99)00068-3Suche in Google Scholar
14 Ganesh, V. A., Dinachali, S. S., Nair, A. S. and Ramakrishna, S., “Robust Superamphiphobic Film from Electrospun TiO2 Nanostructures”, ACS Appl. Mater. Interf., 5, 1527–1532 (2013) 10.1021/Am302790dSuche in Google Scholar
15 Ganesh, V. A., Dinachali, S. S., Raut, H. K., Walsh, T. M., Nair, A. S. and Ramakrishna, S., “Electrospun SiO2 Nanofibers as a Template to Fabricate a Robust and Transparent Superamphiphobic Coating”, RSC Adv., 3, 3819 (2013) 10.1039/C3ra22968 hSuche in Google Scholar
16 Gee, S., Johnson, B. and Smith, A. L., “Optimizing Electrospinning Parameters for Piezoelectric PVDF Nanofiber Membranes”, J. Membr. Sci., 563, 804–812 (2018) 10.1016/J.Memsci.2018.06.050Suche in Google Scholar
17 Ghosal, K., Agatemor, C., Špitálsky, Z., Thomas, S. and Kny, E., “Electrospinning Tissue Engineering and Wound Dressing Scaffolds from Polymer-Titanium Dioxide Nanocomposites”, Chem. Eng. J., 358, 1262–1278 (2019) 10.1016/J.Cej.2018.10.117Suche in Google Scholar
18 Hardick, O., Stevens, B. and Bracewell, D. G., “Nanofibre Fabrication in a Temperature and Humidity Controlled Environment for Improved Fibre Consistency”, J. Mater. Sci., 46, 3890–3898 (2011) 10.1007/S10853-011-5310-5Suche in Google Scholar
19 He, Z., Ma, M., Lan, X., Chen, F., Wang, K., Deng, H., Zhang, Q. and Fu, Q., “Fabrication of a Transparent Superamphiphobic Coating with Improved Stability”, Soft Matter, 7, 6435 (2011) 10.1039/C1sm05574gSuche in Google Scholar
20 Ismail, N., Junior Maksoud, F., Ghaddar, N., Ghali, K. and Tehrani-Bagha, A., “A Mathematical Model to Predict the Effect of Electrospinning Processing Parameters on the Morphological Characteristic of Nano-Fibrous Web and Associated Filtration Efficiency”, J. Aerosol Sci., 113, 227–241 (2017) 10.1016/J.Jaerosci.2017.08.013Suche in Google Scholar
21 Jarusuwannapoom, T., Hongrojjanawiwat, W., “Effect of Solvents on Electro-Spinnability of Polystyrene Solutions and Morphological Appearance of Resulting Electrospun Polystyrene Fibers”, Eur. Polym., 41, 409–421 (2005) 10.1016/J.Eurpolymj.2004.10.010Suche in Google Scholar
22 Koski, A., Yim, K. and Shivkumar, S., “Effect of Molecular Weight on Fibrous PVA Produced by Electrospinning”, Mater. Lett., 58, 493–497 (2004) 10.1016/S0167-577X(03)00532-9Suche in Google Scholar
23 Lasprilla-Botero, J., Álvarez-Láinez, M. and Lagaron, J. M., “The Influence of Electrospinning Parameters and Solvent Selection on the Morphology and Diameter of Polyimide Nanofibers”, Mater. Today Commun., 14, 1–9 (2018) 10.1016/J.Mtcomm.2017.12.003Suche in Google Scholar
24 Lee, J. S., Choi, K. H., Ghim, H. D., Kim, S. S., Chun, D. H., Kim, H. Y. and Lyoo, W. S., “Role of Molecular Weight of Atactic Poly(vinyl alcohol) (PVA) in the Structure and Properties of PVA Nanofabric Prepared by Electrospinning”, J. Appl. Polym. Sci., 93, 1638–1646 (2004) 10.1002/App.20602Suche in Google Scholar
25 Li, H., Yu, S., Han, X. and Zhao, Y., “A Stable Hierarchical Superhydrophobic Coating on Pipeline Steel Surface with Self-Cleaning, Anticorrosion, and Anti-Scaling Properties”, Colloids Surf., A, 503, 43–52 (2016) 10.1016/J.Colsurfa.2016.05.029Suche in Google Scholar
26 Matthews, J. A., Wnek, G. E., Simpson, D. G. and Bowlin, G. L., “Electrospinning of Collagen Nanofibers”, Biomacromolecules, 3, 232–238 (2002) 10.1021/Bm015533uSuche in Google Scholar PubMed
27 Mohammad Khanlou, H., Chin Ang, B., Talebian, S., Muhammad Afifi, A. and Andriyana, A., “Electrospinning of Polymethyl Methacrylate Nanofibers: Optimization of Processing Parameters Using the Taguchi Design of Experiments”, Text. Res. J., 85, 356–368 (2015) 10.1177/0040517514547208Suche in Google Scholar
28 Nair, A. S., Shengyuan, Y., Peining, Z. and Ramakrishna, S., “Rice Grain-Shaped TiO2 Mesostructures by Electrospinning for Dye-Sensitized Solar Cells”, Chem. Commun., 46, 7421–7423 (2010) 10.1039/C0cc01490 gSuche in Google Scholar
29 Nanda, D., Varshney, P., Satapathy, M., Mohapatra, S. S. and Kumar, A., “Self-Assembled Monolayer of Functionalized Silica Microparticles for Self-Cleaning Applications”, Colloids Surf., A, 529, 231–238 (2017) 10.1016/J.Colsurfa.2017.06.007Suche in Google Scholar
30 Nasikhudin, Ismaya, E. P., Diantoro, M., Kusumaatmaja, A. and Triyana, K., “Preparation of PVA/TiO2 Composites Nanofibers by Using Electrospinning Method for Photocatalytic Degradation”, IOP Conf. Series: Materials Science and Engineering, 202, 1–6 (2017) 10.1088/1757–899X/202/1/012011Suche in Google Scholar
31 Nazir, A., Khenoussi, N., Schacher, L., Hussain, T., Adolphe, D. and Hekmati, A. H., “Using the Taguchi Method to Investigate the Effect of Different Parameters on Mean Diameter and Variation in PA-6 Nanofibres Produced by Needleless Electrospinning”, RSC Adv., 5, 76892–76897 (2015) 10.1039/C5ra13649kSuche in Google Scholar
32 Novoa, G., Heinamaki, J., Mirza, S., Antikainen, O., Iraizozcolarte, A., Suzartepaz, A. and Yliruusi, J., “Physical Solid-State Properties and Dissolution of Sustained-Release Matrices of Polyvinylacetate”, Eur. J. Pharm. Biopharm., 59, 343–350 (2005) 10.1016/J.Ejpb.2004.07.012Suche in Google Scholar
33 Pant, H. R., Nam, K. T., Oh, H. J., Panthi, G., Kim, H. D., Kim, B. Il. and Kim, H. Y., “Effect of Polymer Molecular Weight on the Fiber Morphology of Electrospun Mats”, J. Colloid Interf. Sci., 364, 107–111 (2011) 10.1016/J.Jcis.2011.07.094Suche in Google Scholar
34 Park, B. K., Um, I. C., “Effect of Molecular Weight on Electro-Spinning Performance of Regenerated Silk”, Int. J. Biol. Macromol., 106, 1166–1172 (2018) 10.1016/J.Ijbiomac.2017.08.115Suche in Google Scholar PubMed
35 Park, J.-Y., Lee, I.-H., “Influence of Calcination Temperature on Phase Transformation and Grain Size of Electrospun Zirconium Oxide Fibers”, J. Ceram. Soc. Jpn., 120, 229–232 (2012) 10.2109/Jcersj2.120.229Suche in Google Scholar
36 Park, J. Y., Lee, I. H. and Bea, G. N., “Optimization of the Electrospinning Conditions for Preparation of Nanofibers from Polyvinylacetate (PVAc) in Ethanol Solvent”, J. Ind. Eng. Chem., 14, 707–713 (2008) 10.1016/J.Jiec.2008.03.006Suche in Google Scholar
37 Patra, S. N., Easteal, A. J. and Bhattacharyya, D., “Parametric Study of Manufacturing Poly(lactic) Acid Nanofibrous Mat by Electrospinning”, J. Mater. Sci., 44, 647–654 (2009) 10.1007/S10853-008-3050-YSuche in Google Scholar
38 Prosini, P. P., Carewska, M., Cento, C. and Masci, A., “Poly Vinyl Acetate Used as a Binder for the Fabrication of a Lifepo4-Based Composite Cathode for Lithium-Ion Batteries”, Electrochim. Acta, 150, 129–135 (2014) 10.1016/J.Electacta.2014.10.123Suche in Google Scholar
39 Quan, Y., Zhang, L., Qi, R. and Cai, R., “Self-Cleaning of Surfaces: The Role of Surface Wettability and Dust Types”, Sci. Rep., 6, 1–12 (2016) 10.1038/Srep38239Suche in Google Scholar PubMed PubMed Central
40 Ramakrishna, S., Fujihara, K., Teo, W.-E., Lim, T.-C. and Ma, Z.: An Introduction to Electrospinning and Nanofibers, World Scientific Publishing, Singapore (2005) 10.1142/5894Suche in Google Scholar
41 Ray, S. S., Chen, S., Li, C. and Nguyen, C., “A Comprehensive Review: Electrospinning Technique for Fabrication and Surface Modification”, RSC Adv., 6, 85495–85514 (2016) 10.1039/C6RA14952ASuche in Google Scholar
42 Roy, R. K.: A Primer on the Taguchi Method, 2nd Ed., Society of Manufacturing Engineers, Michigan (1990)Suche in Google Scholar
43 Shengyuan, Y., Peining, Z., Nair, A. S. and Ramakrishna, S., “Rice Grain-Shaped TiO2 Mesostructures – Synthesis, Characterization and Applications in Dye-Sensitized Solar Cells and Photocatalysis”, J. Mater. Chem., 21, 6541–6548 (2011) 10.1039/C0jm04512 hSuche in Google Scholar
44 Su, C. I., Liu, Y. S., Hsu, C. H., Lee, J. Y. and Lu, C. H., “Optimum Parameters of the Continuous Process of Electrospun Nanofibrous Yarn”, Fibers Polym., 16, 826–833 (2015) 10.1007/S12221-015-0826-YSuche in Google Scholar
45 Uyar, T., Besenbacher, F., “Electrospinning of Uniform Polystyrene Fibers: The Effect of Solvent Conductivity”, Polymer, 49, 5336–5343 (2008) 10.1016/J.Polymer.2008.09.025Suche in Google Scholar
46 Veerabhadraiah, A., Ramakrishna, S., Angadi, G., Venkatram, M., Kanivebagilu Ananthapadmanabha, V., Hebbale Narayanarao, N. M. and Munishamaiah, K., “Development of Polyvinyl Acetate Thin Films by Electrospinning for Sensor Applications”, Appl. Nanosci., 7, 355–363 (2017) 10.1007/S13204-017-0576-9Suche in Google Scholar
47 Wang, X., Hu, H., Ye, Q., Gao, T., Zhou, F. and Xue, Q., “Superamphiphobic Coatings with Coralline-Like Structure Enabled by One-Step Spray of Polyurethane/Carbon Nanotube Composites”, J. Mater. Chem., 22, 9624 (2012) 10.1039/C2jm30744 hSuche in Google Scholar
48 Wu, C. M., Hsu, C. H., Su, C. I., Liu, C. L. and Lee, J. Y., “Optimizing Parameters for Continuous Electrospinning of Polyacrylonitrile Nanofibrous Yarn Using the Taguchi Method”, J. Ind. Text., 48, 559–579 (2018) 10.1177/1528083717740741Suche in Google Scholar
49 Wu, H., Pan, W., Lin, D. and Li, H., “Electrospinning of Ceramic Nanofibers: Fabrication, Assembly and Applications”, J. Adv. Ceram., 1, 2–23 (2012) 10.1007/S40145-012-0002-4Suche in Google Scholar
50 Yanilmaz, M., Sarac, A. S., “A Review: Effect of Conductive Polymers on the Conductivities of Electrospun Mats”, Text. Res. J., 84, 1325–1342 (2014) 10.1177/0040517513495943Suche in Google Scholar
51 Zhan, Y. L., Ruan, M., Li, W., Li, H., Hu, L. Y., Ma, F. M., Yu, Z. L. and Feng, W., “Fabrication of Anisotropic PTFE Superhydrophobic Surfaces Using Laser Microprocessing and their Self-Cleaning and Anti-Icing Behavior”, Colloids Surf., A, 535, 8–15 (2017) 10.1016/J.Colsurfa.2017.09.018Suche in Google Scholar
52 Zhang, F., McGinity, J. W., “Properties of Hot-Melt Extruded Theophylline Tablets Containing Poly(vinyl acetate)”, Drug Dev. Ind. Pharm., 26, 931–942 (2000) 10.1081/Ddc-100101320Suche in Google Scholar PubMed
53 Ziabari, M., Mottaghitalab, V. and Haghi, A. K., “Application of Direct Tracking Method for Measuring Electrospun Nanofiber Diameter”, Braz. J. Chem. Eng., 26, 53–62 (2009) 10.1590/S0104-66322009000100006Suche in Google Scholar
© 2020, Carl Hanser Verlag, Munich
Artikel in diesem Heft
- Contents
- Contents
- Regular Contributed Articles
- Study of Mechanical and Moisture Absorption Behavior of Epoxy/Cloisite-15A Nanocomposites Processed Using Twin Screw Extruder
- Fabrication of Poly Vinyl Acetate (PVAc) Nanofibers Using DMAC Solvent: Effect of Molecular Weight, Optimization by Taguchi DoE
- Effect of Poly(phenylene sulfide) (PPS) as Functional Additive on the Physical Properties of Poly(phenylene ether) (PPE)/PPS Blends
- Enhanced Dispersion and Mechanical Behavior of Polypropylene Composites Compounded Using Extension-Dominated Extrusion
- The Influence of Melt-Mixing Conditions and State of Dispersion on Crystallisation, Rheology and Mechanical Properties of PCL/Sepiolite Nanocomposites
- Experimental and Numerical Investigation on Indentation of Orthotropic Microplates with Finite Thickness
- Microcellular Thermosetting Polyurethane Foams
- Utilisation of Waste Plantain (Musa Paradisiaca) Peels and Waste Polystyrene in the Development of Reinforced Polymer Composites
- PPS News
- PPS News
- Seikei Kakou Abstracts
- Seikei Kakou Abstracts
Artikel in diesem Heft
- Contents
- Contents
- Regular Contributed Articles
- Study of Mechanical and Moisture Absorption Behavior of Epoxy/Cloisite-15A Nanocomposites Processed Using Twin Screw Extruder
- Fabrication of Poly Vinyl Acetate (PVAc) Nanofibers Using DMAC Solvent: Effect of Molecular Weight, Optimization by Taguchi DoE
- Effect of Poly(phenylene sulfide) (PPS) as Functional Additive on the Physical Properties of Poly(phenylene ether) (PPE)/PPS Blends
- Enhanced Dispersion and Mechanical Behavior of Polypropylene Composites Compounded Using Extension-Dominated Extrusion
- The Influence of Melt-Mixing Conditions and State of Dispersion on Crystallisation, Rheology and Mechanical Properties of PCL/Sepiolite Nanocomposites
- Experimental and Numerical Investigation on Indentation of Orthotropic Microplates with Finite Thickness
- Microcellular Thermosetting Polyurethane Foams
- Utilisation of Waste Plantain (Musa Paradisiaca) Peels and Waste Polystyrene in the Development of Reinforced Polymer Composites
- PPS News
- PPS News
- Seikei Kakou Abstracts
- Seikei Kakou Abstracts