Study of Mechanical and Moisture Absorption Behavior of Epoxy/Cloisite-15A Nanocomposites Processed Using Twin Screw Extruder
-
G. Angadi
, H. N. N. Murthy , R. Sridhar , S. Firdosh und T. S. Roopa
Abstract
This paper presents the effect of process parameters of twin screw extruder and addition of Cloisite-15A on mechanical, thermal and moisture barrier properties of epoxy/Cloisite-15A nanocomposites. Four lobed kneading blocks were used the in shearing zone of the extruder, based on their effectiveness in dispersing nanofillers in epoxy. Screw speeds from 100 min−1 to 400 min−1, number of passes up to 15, temperature from 5°C to 80°C and Cloisite-15A contents from 1 wt.% to 2.5 wt.% were considered for designing the L12 Orthogonal Array. Improvements in tensile strength, compression strength, flexural strength, impact strength, hardness and moisture diffusivity in the nanocomposites were 11.89%, 20.06%, 27.73%, 37.26%, 25.48% and 56.22% respectively, when compared to neat epoxy. The improvements were achieved for screw speed of 400 min–1, 5 passes through the extruder, processing temperature of 5°C and 2 wt.% of Cloisite-15A. Dispersion of Cloisite-15A in epoxy was studied by XRD, SEM and TEM. Thermal stability and moisture barrier properties were superior in the nanocomposites.
References
1 Achmad, C., Mujtahid, K., Saeed, A. Z. and Mansour, N. A. O., “Rheological and Mechanical Properties of Polypropylene/Calcium Carbonate Nanocomposites Prepared from Masterbatch”, J. Thermoplast. Compos., 29, 593–622 (2014) 10.1177/0892705714530747Suche in Google Scholar
2 Alfred, T. N., Mahesh, H., Eldon, T. and Shaik, J., “Effects of Surface Treatments of Montmorillonite Nanoclay on Cure Behavior of Diglycidyl Ether of Bisphenol A Epoxy Resin”, J. Nanosci. (2013) 10.1155/2013/864141Suche in Google Scholar
3 Alsteens, B., Vincent, L. and Avalosse, T., “Parametric Study of the Mixing Efficiency in a Kneading Block Section of a Twin-screw Extruder”, Int. Polym. Proc., 19, 207–217 (2004) 10.3139/217.1836Suche in Google Scholar
4 Antonio, F. A., David, T. S. M., “Modeling Nanoclay Effects into Laminates Failure Strength and Porosity”, Compos. Struct., 87, 55–62 (2009) 10.1016/j.compstruct.2007.12.009Suche in Google Scholar
5 Apoorva, P. S., Rakesh, G., Hota, V. S. G. and Clois, P., “Moisture Diffusion through Vinyl Ester Nanocomposites Made with Montmorillonite Clay”, Polym. Eng. Sci., 42, 1852–1863 (2002) 10.1002/pen.11078Suche in Google Scholar
6 Asghar, H. K., Mohammad, R. B., Shu, J. C., George, P. S., Xiao, L. Z. and Wen, H. D., “Optimizing the Degree of Carbon Nanotube Dispersion in a Solvent for Producing Reinforced Epoxy Matrices”, Powder Technol.284, 541–550 (2015). 10.1016/j.powtec.2015.07.023Suche in Google Scholar
7 Asma, Y., Jandro, L. A. and Isaac, M. D., “Processing of Clay/Epoxy Nanocomposites by Shear Mixing”, Scr. Mater., 49, 81–86 (2003) 10.1016/S1359-6462(03)00173-8Suche in Google Scholar
8 Asmussen, E., Peutzfeldt, A., “Influence of UEDMA, BisGMA and TEGDMA on Selected Mechanical Properties of Experimental Resin Composites”, Dent. Mater., 14, 51–56 (1998) 10.1016/S0109-5641(98)00009-8Suche in Google Scholar
9 Becker, O., Russell, V. and George, P. S., “Thermal Stability and Water Uptake of High Performance Epoxy Layered Silicate Nanocomposites”, Eur. Polym. J., 40, 187–195 (2004) 10.1016/j.eurpolymj.2003.09.008Suche in Google Scholar
10 Bindu, S. T. K., Ayswarya, E. P., Beena, T. A., Sabura, B. P.M. and Thomas, T. E., “Fabrication of Partially Exfoliated and Disordered Intercalated Cloisite Epoxy Nanocomposites via in situ Polymerization: Mechanical, Dynamic Mechanical, Thermal and Barrier Properties”, Appl. Clay Sci., 102, 220–230 (2014) 10.1016/j.clay.2014.09.043Suche in Google Scholar
11 Bowen, T., Noreen, L. T., “A Review of the Water Barrier Properties of Polymer/Clay and Polymer/Graphene Nanocomposites”, J. Membrane Sci., 514, 595–612 (2016) 10.1016/j.memsci.2016.05.026Suche in Google Scholar
12 Bravo, V. L., Hrymak, A. N. and WrightJ. D., “Study of Particle Trajectories, Residence Times and Flow Behavior in Kneading Discs of Intermeshing Co-Rotating Twin-Screw Extruders”, Polym. Eng. Sci., 44, 779–793 (2004) 10.1002/pen.20070Suche in Google Scholar
13 Byung, C. K., Sang, W. P. and Lee, D., “Fracture Toughness of the Nano-Particle Reinforced Epoxy Composite”, Compos. Struct., 86, 69–77 (2008) 10.1016/j.compstruct.2008.03.005Suche in Google Scholar
14 Charles, A. W., Sergey, V., “Estimating Realistic Confidence Intervals for the Activation Energy Determined from Thermoanalytical Measurements”, Anal. Chem., 72, 3171–3175 (2000) 10939383 10.1021/ac000210uSuche in Google Scholar
15 Charlie, M., “Twin Screw Extruders as Continuous Mixers for Thermal Processing: A Technical and Historical Perspective”, AAPS J. Pharm. Sci. Tech., 17, 3–19 (2016) 26883259 10.1208/s12249-016-0485-3Suche in Google Scholar
16 Chun, K. L., Kin, T. L., Hoi, Y. C. and Hang, Y. L., “Effect of Ultrasound Sonication in Nanoclay Clusters of Nanoclay/Epoxy Composites”, Mater. Lett., 59, 1369–1372 (2005) 10.1016/j.matlet.2004.12.048Suche in Google Scholar
17 Chun, L. W., Mingqiu, Z., Min, Z. R. and Klaus, F., “Tensile Performance Improvement of Low Nanoparticles Filled Polypropylene Composites”, Compos. Sci. Technol.62, 1327–1340 (2002) 10.1016/s0266-3538(02)00079-9Suche in Google Scholar
18 Cristina, T., Jose, C., Thomas, S. and Antonio, G. C., “Hybrid Algorithms for the Twin–Screw Extrusion Configuration Problem”, Appl. Soft Comput., 23, 298–307 (2014) 10.1016/j.asoc.2014.06.022Suche in Google Scholar
19 Dazhu, C., Pingsheng, H., “Monitoring the Curing Process of Epoxy Resin Nanocomposites Based on Organo-Montmorillonite – A New Application of Resin Cure Meter”, Compos. Sci. Technol., 64, 2501–2507 (2004) 10.1016/j.compscitech.2004.05.008 Suche in Google Scholar
20 Dejan, D., Peter, K., “Impact of Screw Elements on Continuous Granulation with a Twin-Screw Extruder”, J. Pharm. Sci., 97, 4934–4942 (2008) 10.1002/jps.21339Suche in Google Scholar PubMed
21 Emin, M. A., Karbstein, H. P., “Analysis of the Dispersive Mixing Efficiency in a Twin-Screw Extrusion Processing of Starch Based Matrix”, J. Food Eng., 115, 132–143 (2013) 10.1016/j.jfoodeng.2012.10.008Suche in Google Scholar
22 Fuli, Z., Dan, Y., Ruiwei, G., Liandong, D., Anjie, D. and Jianhua, Z., “Composites of Polymer Hydrogels and Nanoparticulate Systems for Biomedical and Pharmaceutical Applications”, Nanomaterials, 5, 2054–2130 (2015) 28347111 10.3390/nano5042054Suche in Google Scholar PubMed PubMed Central
23 Gangadhar, A., Narasimha Murthy, H. N., Sridhar, R., Raghavendra, N. and SalimF., “Simulation of Epoxy/Cloisite-15A Multifunctional Nanocomposites using Twin Screw Extruders”, Mater. Today Proc., 5(10), 21127–21134, (2018) 10.1016/j.matpr.2018.06.509Suche in Google Scholar
24 Gangadhar, A., Narasimha Murthy, H. N., Sridhar, R., SalimF., Raghavendra, N. and Krishna, M., “Effect of Screw Configuration on the Dispersion of Nanofillers in Thermoset Polymers” J. Polym. Eng., 37(8), 815–825 (2017) 10.1515/polyeng-2015-0427Suche in Google Scholar
25 Giorgos, G., Nektaria, M. B. and AlkiviadisS. P., “Effect of Dispersion Conditions on the Thermo-Mechanical and Toughness Properties of Multi Walled Carbon Nanotubes-Reinforced Epoxy”, Composites Part B, 43, 2697–2705 (2012) 10.1016/j.compositesb.2012.01.070Suche in Google Scholar
26 Hai, J. L., Guo, Z. L., Xiao, Y. M., Bao, Y. Z. and Xiang, B. C., “Epoxy/Clay Nanocomposites: Further Exfoliation of Newly Modified Clay Induced by Shearing Force of Ball Milling”, Polym. Int., 53, 1545–1553 (2004) 10.1002/pi.1596Suche in Google Scholar
27 Haipan, S., Yu, D., Ian, J. D. and Pramanik, A., “The Effects of Material Formulation and Manufacturing Process on Mechanical and Thermal Properties of Epoxy/Clay Nanocomposites”, Int. J. Adv. Manuf. Technol., 87, 1999–2012 (2016) 10.1007/s00170-016-8572-xSuche in Google Scholar
28 Hatem, A., Low, I. M., “Effect of Water Absorption on the Mechanical Properties of Nanoclay Filled Recycled Cellulose Fibre Reinforced Epoxy Hybrid Nanocomposites”, Composites Part A, 44, 23–31 (2013) 10.1016/j.compositesa.2012.08.026Suche in Google Scholar
29 Hongbo, G., Chao, M., Junwei, G., Jiang, G., Xingru, Y., Jiangnan, H., Qiuyu, Z. and Zhanhu, G., “An Overview of Multifunctional Epoxy Nanocomposites”, J. Mater. Chem. C, 4, 5890–5906 (2016) 10.1039/C6TC01210HSuche in Google Scholar
30 Hongxia, Z., Robert, K. Y. L., “Effect of Water Absorption on the Mechanical and Dielectric Properties of Nano-Alumina Filled Epoxy Nanocomposites”, Key Eng. Mater., 39, 602–611 (2008) 10.1016/j.compositesa.2007.07.006Suche in Google Scholar
31 Jamaluddin, M., Aidah, J., Constantinos, S. and Nurulnatisya, A., “Compressive Properties of Nanoclay/Epoxy Nanocomposites”, Procedia Eng., 41, 1607–1613 (2012) 10.1016/j.proeng.2012.07.357Suche in Google Scholar
32 Jane, M. F. P., Sergio, M. and Rezende, M. C., “Evaluation of Mechanical Properties of Four Different Carbon/Epoxy Composites Used in Aeronautical Field”, Mater. Res., 8, 91–97 (2005). 10.1590/s1516-14392005000100016Suche in Google Scholar
33 Jang, K. K., Chugang, H., Ricky, S. C. W. and Man, L. S., “Moisture Barrier Characteristics of Organoclay–Epoxy Nanocomposites”, Compos. Sci. Technol., 65, 805–813 (2005) 10.1016/j.compscitech.2004.10.014Suche in Google Scholar
34 Jayita, B., Suprakas, S. R., Manfred, S. and James Wesley, S., “A Combined Experimental and Theoretical Approach to Establish the Relationship between Shear Force and Clay Platelet Delamination in Melt-Processed Polypropylene Nanocomposites”, Polym., 55, 2233–2245 (2014) 10.1016/j.polymer.2014.03.014Suche in Google Scholar
35 Jeffrey, W. G., “Flammability and Thermal Stability Studies of Polymer Layered-Silicate (Clay) Nanocomposites”, Appl. Clay Sci., 15, 31–49 (1999) 10.1016/s0169-1317(99)00019-8Suche in Google Scholar
36 Jinwei, W., Shuchao, Q., “Study on the Thermal and Mechanical Properties of Epoxy–Nanoclay Composites: The Effect of Ultrasonic Stirring Time”, Mater. Lett., 61, 4222–4224 (2007) 10.1016/j.matlet.2007.01.058Suche in Google Scholar
37 Karthik Babu, N. B., Ramesh, T., “Enhancement of Thermal and Mechanical Properties of Novel Micro-Wear Debris Reinforced Epoxy Composites”, Mater. Res. Express, 6, 105358 (2019) 10.1088/2053-1591/ab404fSuche in Google Scholar
38 Karthik Babu, N. B., Muthukumaran, S., Ramesh, T. and Arokiasamy, S., “Effect of Agro-Waste Microcoir Pith and Nanoalumina Reinforcement on Thermal Degradation and Dynamic Mechanical Behavior of Polyester Composites”, J. Nat. Fibers, (2019) 10.1080/15440478.2019.1636745Suche in Google Scholar
39 Kerstin, M., Elodie, B., Marcos, L., Maria, J. B., Yolanda, E. S., Jose, M. L., Oliver, M., Alvise, B., Steve, H., Uwe, B., Germán, P., Marius, J., Martina, L., Zuzana, S., Sara, C. and Markus, S., “Review on the Processing and Properties of Polymer Nanocomposites and Nanocoatings and their Applications in the Packaging, Automotive and Solar Energy Fields”, Nanomaterials7, 1–47 (2017) 28362331 10.3390/nano7040074Suche in Google Scholar PubMed PubMed Central
40 Khaliq, M., Mohammad, J., Azman, H., Aznizam, A. B., Abdul, K. H. P. S., Arshad, A. S. and Inuwa, I., “Potential Materials for Food Packaging from Nanoclay/Natural Fibres Filled Hybrid Composites”, Mater. Des.46, 391–410 (2012) 10.1016/j.matdes.2012.10.044Suche in Google Scholar
41 Kim, D. H., Kim, H. S., “Investigation of Hygroscopic and Mechanical Properties of Nanoclay/Epoxy System: Molecular Dynamics Simulations and Experiments”, Compos. Sci. Technol., 101, 110–120 (2014) 10.1016/j.compscitech.2014.06.026Suche in Google Scholar
42 Kornmann, X., Henrik, L. and Berglund, L. A., “Synthesis of Epoxy–Clay Nanocomposites. Influence of the Nature of the Curing Agent on Structure”, Polymer, 42, 4493–4499 (2001) 10.1016/s0032-3861(00)00801-6Suche in Google Scholar
43 Lakshmi, N. S., Rakesh, G. and Mohit, B., “Barrier Properties of Polymer Nanocomposites”, Ind. Eng. Chem. Res., 45, 8282–8289 (2006) 10.1021/ie0510223Suche in Google Scholar
44 Li, H., Thompson, M. R. and O'Donnell, K. P., “Understanding Wet Granulation in the Kneading Block of Twin Screw Extruders”, Chem. Eng. Sci., 113, 11–21 (2014) 10.1016/j.ces.2014.03.007Suche in Google Scholar
45 Liu, J., Boo, W. J., Clearfield, A. and Sue, H. J., “Intercalation and Exfoliation: A Review on Morphology of Polymer Nanocomposites Reinforced by Inorganic Layer Structures”, Mater. Manuf. Process., 21, 143–151 (2006) 10.1080/amp-200068646Suche in Google Scholar
46 Mahmood, S., Amir, R. K. and Chitsazzadeh, M., “Fabrication and Mechanical Properties of Clay/Epoxy Nanocomposite and its Polymer Concrete”, Mater. Des., 40, 443–452 (2012) 10.1016/j.matdes.2012.03.008Suche in Google Scholar
47 Michael, A., Philippe, D., “Polymer-Layered Silicate Nanocomposites: Preparation, Properties and Uses of a New Class of Materials”, Mater. Sci. Eng., 28, 1–63 (2000) 10.1016/S0927-796x(00)00012-7Suche in Google Scholar
48 Mirzadeh, A., Lafleur, P. G., Kamal, M. R. and Dubois, C., “The Effects of Nanoclay Dispersion Levels and Processing Parameters on the Dynamic Vulcanization of TPV Nanocomposites Based on PP/EPDM Prepared by Reactive Extrusion”, Polym. Eng. Sci., 52, 1099–1110 (2012) 10.1002/pen.22178Suche in Google Scholar
49 Mohammad, A., Ahmed, A. and Uttandaraman, S., “Silane Functionalization of Sodium Montmorillonite Nanoclay and its Effect on Rheological and Mechanical Properties of HDPE/Clay Nanocomposites”, Appl. Clay Sci., 146, 439–448 (2017) 10.1016/j.clay.2017.06.035Suche in Google Scholar
50 Mohan, T. P., Kanny, K., “Water Barrier Properties of Nanoclay Filled Sisal Fibre Reinforced Epoxy Composites”, Composites Part A, 42, 385–393 (2011) 10.1016/j.compositesa.2010.12.010Suche in Google Scholar
51 Moinuddin, M., Dilhan, K. and Golba, J. C., “Simulation of Co-Rotating Twin Screw Extrusion Process Subject to Pressure-Dependent Wall Slip at Barrel and Screw Surfaces: 3D FEM Analysis for Combinations of Forward- and Reverse-Conveying Screw Elements”, Int. Polym. Proc., 29, 51–62 (2014) 10.3139/217.2802 Suche in Google Scholar
52 Mo-Lin, C., Kin-Tak, L., Tsun-Tat, W., Mei-Po, H. and David, H., “Mechanism of Reinforcement in a Nanoclay/Polymer Composite”, Composites Part B, 42, 1708–1712 (2011) 10.1016/j.compositesb.2011.03.011Suche in Google Scholar
53 Monika, S., Grazyna, S. M. and Karla, B., “Effect of Nanofillers Dispersion in Polymer Matrices: A Review”, Sci. Adv. Mater., 3, 1–25 (2010) 10.1166/sam.2011.1136Suche in Google Scholar
54 Olesja, S., Samuel, T. B., Mannov, E., Schulte, K. and Andrey, N. A., “Water Transport in Epoxy/MWCNT Composites”, Eur. Polym. J., 49, 2138–2148 (2013) 10.1016/j.eurpolymj.2013.05.010Suche in Google Scholar
55 Omid, Z., Mojtaba, A., Saeid, N., Karthik, C. P. and Minoo, N., “A Technical Review on Epoxy-Clay Nanocomposites: Structure, Properties, and their Applications in Fiber Reinforced Composites”, Composites Part B, 135, 1–24 (2017) 10.1016/j.compositesb.2017.09.066Suche in Google Scholar
56 Phillip, B. M., Emmanuel, G., “Synthesis and Characterization of Layered Silicate-Epoxy Nanocomposites”, Chem. Mater., 6, 1719–1725 (1994) 10.1021/cm00046a026Suche in Google Scholar
57 Potente, H., Ansahl, J. and Klarholz, B., “Design of Tightly Intermeshing Co-Rotating Twin Screw Extruders”, Int. Polym. Proc.9, 11–25 (1994) 10.3139/217.940011Suche in Google Scholar
58 Qi, B., Zhang, Q. X., Bannister, M. and Mai, Y. W., “Investigation of the Mechanical Properties of DGEBA-Based Epoxy Resin with Nanoclay Additives”, Compos. Struct., 75, 514–519 (2006) 10.1016/j.compstruct.2006.04.032Suche in Google Scholar
59 Qinghua, Z., Aibing, Y., Max, L. and Paul, D. R., “Clay-Based Polymer Nanocomposites: Research and Commercial Development”, J. Nanosci. Nanotechnol., 5, 1574–1592 (2005) 16245517 10.1166/jnn.2005.411Suche in Google Scholar PubMed
60 Quang, T. N., Don, B., “Preparation of Polymer – Clay Nanocomposites and their Properties”, Adv. Polym. Technol., 25, 270–285 (2006) 10.1002/adv.20079Suche in Google Scholar
61 Rajashekar, K., Surendranathan, A. O., Kori, S. A., Nirbhay, S., Rameshkumar, A.V. and Sourabh, S., “Defence Applications of Polymer Nanocomposites”, Defence Sci. J., 60, 551–563 (2010) 10.14429/dsj.60.578Suche in Google Scholar
62 Roy, K. R.: A Primer on the Taguchi Method, Society of Manufacturing Engineers, Birmingham, UK (2010)Suche in Google Scholar
63 Sajjad, D., Faramarz, A. G., Ismail, G. and Mohsen, A., “Predicting of Mechanical Properties of PP/LLDPE/TiO2 Nano-Composites by Response Surface Methodology”, Composites Part B, 84, 109–120 (2016) 10.1016/j.compositesb.2015.08.075Suche in Google Scholar
64 Sajjad, M. S., Taher, A. and Samrand, R. A., “Investigation of the Effect of Nanoclay and Processing Parameters on the Tensile Strength and Hardness of Injection Molded Acrylonitrile Butadiene Styrene–Organoclay Nanocomposites”, Mater. Des., 58, 527–534 (2014) 10.1016/j.matdes.2014.02.014Suche in Google Scholar
65 Salahuddin, N., “Layered Silicate/Epoxy Nanocomposites: Synthesis, Characterization and Properties”, Polym. Adv. Technol., 15, 251–259 (2004) 10.1002/pat.382Suche in Google Scholar
66 Shaik, Z., Mahesh, H., Yuanxin, Z., Alfred, T. N., Ashok, K. and Shaik, J., “Experimental and Numerical Investigations on Flexural and Thermal Properties of Nanoclay–Epoxy Nanocomposites”, Mat. Sci. Eng., A., 527, 7920–7926 (2010) 10.1016/j.msea2010.08.078Suche in Google Scholar
67 Sridhar, R., Narasimhamurthy, H., Karthik, B., Vishnumahesh, K. R., Krishna, M., and RatnaP., “Moisture Diffusion through Nanoclay/Vinylester Processed Using Twin-Screw Extrusion”, J. Vinyl Add. Tech., 20, 152–159 (2014) 10.1002/vnl.21367Suche in Google Scholar
68 Sridhar, R., Narasimhamurthy, H., Niranjan, P., Vishnumahesh, K. R. and Krishna, M., “Parametric Study of Twin Screw Extrusion for Dispersing MMT in Vinylester Using Orthogonal Array Technique and Grey Relational Analysis”, Composites Part B, 43, 599–608 (2011) 10.1016/j.compositesb.2011.08.025Suche in Google Scholar
69 Sun, M. L., Wu, S. H., Gwo, G. L. and Trong, M. D., “Unusual Mechanical Properties of Melt-Blended Poly(lactic acid) (PLA)/Clay Nanocomposites”, Eur. Polym. J., 52, 193–206 (2014) 10.1016/j.eurpolymj.2013.12.012Suche in Google Scholar
70 Sung, R. H., Kyong, Y. R., Hee, C. K. and Jeong, T. K., “Fracture Performance of Clay/Epoxy Nanocomposites with Clay Surface-Modified Using 3-Aminopropyltriethoxysilane”, Colloids Surf., A, 313, 112–115 (2008) 10.1016/j.colsurfa.2007.04.082 Suche in Google Scholar
71 Sung, R. H., Ryu, S. H., Park, S. J. and Kyong, Y. R., “Effect of Clay Surface Modification and Concentration on the Tensile Performance of Clay/Epoxy Nanocomposites”, Mat. Sci. Eng., A., 448264–268 (2007) 10.1016/j.msea.2006.10.052Suche in Google Scholar
72 Suraj, C. Z., Sriraman, R. and Singh, R. P., “Effect of Processing Parameters and Clay Volume Fraction on the Mechanical Properties of Epoxy-Clay Nanocomposites”, J. Mater. Sci., 41, 2219–2228 (2006) 10.1007/s10853-006-7179-2Suche in Google Scholar
73 Swetha, C., Narumichi, S., Folke, J. T., Rolf, M., Bodo, F. and Schulte, K., “Fracture Toughness and Failure Mechanism of Graphene Based Epoxy Composites”, Compos. Sci. Technol., 97, 90–99 (2014) 10.1016/j.compscitech.2014.03.014Suche in Google Scholar
74 Tatiana, G. K., Andrey, N. A., “Moisture Absorption by Epoxy/Montmorillonite Nanocomposite”, Compos. Sci. Technol., 69, 2711–2715 (2009) 10.1016/j.compscitech.2009.08.013Suche in Google Scholar
75 Timothy, V. D., “Applications of Nanotechnology in Food Packaging and Food Safety: Barrier Materials, Antimicrobials and Sensors”, J. Colloid Interface Sci., 361, 1–24 (2011) 10.1016/j.jcis.2011.07.017Suche in Google Scholar PubMed PubMed Central
76 Trystan, D., Disdier, E. P. and Vergnes, B., “Influence of Twin-Screw Processing Conditions on Structure and Properties of Polypropylene – Organoclay Nanocomposites”, Int. Polym. Proc., 27, 517–526 (2012) 10.3139/217.2591Suche in Google Scholar
77 Uddin, F., Sun, C. T., “Effect of Nanoparticle Dispersion on Mechanical Behavior of Polymer Nanocomposites”, 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Palm Springs, USA (2009) 10.2514/6.2009-2333Suche in Google Scholar
78 Velmurugan, R., Mohan, T. P., “Room Temperature Processing of Epoxy-Clay Nanocomposites”, J. Mater. Sci., 39, 7333–7339 (2004) 10.1023/B:JMSC.0000048748.35490.9Suche in Google Scholar
79 Virgínia, S. S., Otávio, B., Martha, F. S. L. and Raquel, S. M., “Morphological, Thermomechanical and Thermal Behavior of Epoxy/MMT Nanocomposites”, J. Non-Cryst. Solids, 400, 58–66 (2014) 10.1016/j.jnoncrysol.2014.05.003Suche in Google Scholar
80 Weiping, L., Hoa, S. V. and Martin, P., “Fracture Toughness and Water Uptake of High-Performance Epoxy/Nanoclay Nanocomposites”, Compos. Sci. Technol., 65, 2364–2373 (2005) 10.1016/j.compscitech.2005.06.007Suche in Google Scholar
81 Weiping, L., Hoa, S. V. and Martin, P., “Water Uptake of Epoxy–Clay Nanocomposites: Experiments and Model Validation”, Compos. Sci. Technol., 68, 2066–2072 (2008) 10.1016/j.compscitech.2007.07.024Suche in Google Scholar
82 Xiao, F. L., Kin, T. L. and Yan, S. Y., “Mechanical Properties of Epoxy-Based Composites Using Coiled Carbon Nanotubes”, Compos. Sci. Technol., 68, 2876–2881 (2008) 10.1016/j.compscitech.2007.10.019Suche in Google Scholar
83 Yasser, R., Hamed, M. A. and Salmankhani, A., “Optimization of Mechanical Properties of Epoxy-Based Hybrid Nanocomposite: Effect of Using Nano Silica and High-Impact Polystyrene by Mixture Design Approach”, Mater. Des., 56, 1068–1077 (2013) 10.1016/j.matdes.2013.11.060Suche in Google Scholar
84 Yusra, A., Yan, Z., Xiao, H., Tianjiao, B. and YanW., “Combined Effect of Graphene Oxide and MWCNTs on Microwave Absorbing Performance of Epoxy Composites”, Polym. Adv. Technol., 26, 620–625 (2015) 10.1002/pat.3496Suche in Google Scholar
© 2020, Carl Hanser Verlag, Munich
Artikel in diesem Heft
- Contents
- Contents
- Regular Contributed Articles
- Study of Mechanical and Moisture Absorption Behavior of Epoxy/Cloisite-15A Nanocomposites Processed Using Twin Screw Extruder
- Fabrication of Poly Vinyl Acetate (PVAc) Nanofibers Using DMAC Solvent: Effect of Molecular Weight, Optimization by Taguchi DoE
- Effect of Poly(phenylene sulfide) (PPS) as Functional Additive on the Physical Properties of Poly(phenylene ether) (PPE)/PPS Blends
- Enhanced Dispersion and Mechanical Behavior of Polypropylene Composites Compounded Using Extension-Dominated Extrusion
- The Influence of Melt-Mixing Conditions and State of Dispersion on Crystallisation, Rheology and Mechanical Properties of PCL/Sepiolite Nanocomposites
- Experimental and Numerical Investigation on Indentation of Orthotropic Microplates with Finite Thickness
- Microcellular Thermosetting Polyurethane Foams
- Utilisation of Waste Plantain (Musa Paradisiaca) Peels and Waste Polystyrene in the Development of Reinforced Polymer Composites
- PPS News
- PPS News
- Seikei Kakou Abstracts
- Seikei Kakou Abstracts
Artikel in diesem Heft
- Contents
- Contents
- Regular Contributed Articles
- Study of Mechanical and Moisture Absorption Behavior of Epoxy/Cloisite-15A Nanocomposites Processed Using Twin Screw Extruder
- Fabrication of Poly Vinyl Acetate (PVAc) Nanofibers Using DMAC Solvent: Effect of Molecular Weight, Optimization by Taguchi DoE
- Effect of Poly(phenylene sulfide) (PPS) as Functional Additive on the Physical Properties of Poly(phenylene ether) (PPE)/PPS Blends
- Enhanced Dispersion and Mechanical Behavior of Polypropylene Composites Compounded Using Extension-Dominated Extrusion
- The Influence of Melt-Mixing Conditions and State of Dispersion on Crystallisation, Rheology and Mechanical Properties of PCL/Sepiolite Nanocomposites
- Experimental and Numerical Investigation on Indentation of Orthotropic Microplates with Finite Thickness
- Microcellular Thermosetting Polyurethane Foams
- Utilisation of Waste Plantain (Musa Paradisiaca) Peels and Waste Polystyrene in the Development of Reinforced Polymer Composites
- PPS News
- PPS News
- Seikei Kakou Abstracts
- Seikei Kakou Abstracts