Startseite Characterization of Anisotropic Properties of Hot Compacted Self-Reinforced Composites (SRCs) via Thermal Diffusivity Measurement
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Characterization of Anisotropic Properties of Hot Compacted Self-Reinforced Composites (SRCs) via Thermal Diffusivity Measurement

  • H.-P. Heim , F. Mieth , F. Jakob und M. Schnau
Veröffentlicht/Copyright: 1. November 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The mechanical properties of self-reinforced composites (SRCs) produced in a hot compaction process significantly depend on the process parameters. Only a little deviation of the process temperature or pressure causes the component to act differently under mechanical load. This is a chance and a challenge at the same time, since this process is difficult to handle but by properly controlling the process parameters, the mechanical properties can be adjusted, even locally for one component. In this research SRC are manufactured in a hot compaction process. A correlation between process parameters and density is found. Density increased from 0,8 to 0,91 g/cm³ by increasing temperature and pressure in the hot compaction process. The different thermal properties in the direction of orientation (IP) and transverse to orientation (TP) are measured with a laser flash device. It was found that, due to a change in density and molecular orientation, diffusivity and conductivity are influenced in different degrees in IP and TP directions. For interpretation of thermal measurement results, microstructures are analysed with a confocal laser scanning microscope after preparing the specimen with a permanganate etching. A schematic model of conductive path is worked out and discussed. With measurement data the anisotropy of IP and TP diffusivity is calculated, and a model is built to describe relative density related to anisotropy. The highest anisotropy between IP and TP diffusivity was calculated with a ratio of 6 at a relative density of approximately 0,82 g/cm³. Since mechanical properties in correlation to process parameters have already been investigated, results of this investigation, in combination with previous research on mechanical properties, will enable the development of a non-destructive testing method for SRCs by measuring the thermal diffusivity.


Correspondence address, Mail address: Fabian Jakob, IfW Plastics Technology, University of Kassel, Mönchebergstrasse 3, 34125 Kassel, Germany, E-mail:

References

Alcock, B., “Single Polymer Composites Based on Polypropylene: Processing and Properties”, PhD Thesis, Queen Mary University, London (2004)Suche in Google Scholar

Andrzejewski, J., Szostak, M., Bak, T. and Trzeciak, M., “The Influence of Processing Conditions on the Mechanical Properties and Structure of Poly(ethylene terephthalate) Self-Reinforced Composites”, J. Thermoplast. Compos. Mater., 29, 11941209 (2016) 10.1177/0892705714563117Suche in Google Scholar

Bai, L., Zhao, X., Bao, R.-Y., Liu, Z.-Y., Yang, M.-B. and Yang, W., “Effect of Temperature, Crystallinity and Molecular Chain Orientation on the Thermal Conductivity of Polymers: A Case Study of PLLA”, J. Mater. Sci., 53, 1054310553 (2018) 10.1007/s10853-018-2306-4Suche in Google Scholar

Bledzki, A., Heim, H.-P., Paßmann, D. and Ries, A., “Chapter No. 22 Manufacturing of Self-Reinforced All-PP Composites”, in Synthetic Polymer-Polymer Composites, Bhattacharyya, D., Fakirov, S. (Eds.), Hanser, Cincinnati, p. 719738 (2012) 10.3139/9781569905258.022Suche in Google Scholar

Bledzki, A., Paßmann, D., Ries, A. und Cate, A., “Funktionelle Gradierung der Impakteigenschaften eigenverstärkter PP-Faserverbunde beim Heißkompaktieren”, Mater. Test., 50, 623631 (2008) 10.3139/120.100924Suche in Google Scholar

Breiling, A., Ehrenstein, G. und Varga, J., “Ätzen von Kunststoffen – Eine Präparationstechnik für mikroskopische Untersuchungen”, Materialprüfung, 39, 8185 (1997)Suche in Google Scholar

Chen, J., “Fabrication and Mechanical Properties of Self-Reinforced Poly(ethylene terephthalate) Composites”, eXPRESS Polym. Lett., 5, 228237 (2011) 10.3144/expresspolymlett.2011.22Suche in Google Scholar

Ehrenstein, G.: Polymerwerkstoffe – Struktur, Eigenschaften, Anwendung, 2nd Edition, Hanser, München, Wien (1999)Suche in Google Scholar

Heim, H.-P., Rohde, B. and Ries, A., “Morphology-Property-Relationship of Thermo-Mechanically Graded Self-Reinforced Polypropylene Composites”, in PPS (Ed.), AIP Conference Proceedings, Vol.1593, 776779 (2013a) 10.1063/1.4873890Suche in Google Scholar

Heim, H.-P., Tillmann, W., Ries, A., Sievers, N., Rohde, B. and Zielke, R., “Visualisation of the degrees of Compaction of Self-Reinforced Polypropylene Composites by Means of Ultrasonic Testing”, J. Plast. Technol., 9, 276294 (2013b)Suche in Google Scholar

Hellmuth, W., Kilian, H.-G. und Müller, F. H., “Anisotropie deformierter physikalischer Netzwerke am Beispiel der Vinylpolymeren”, Kolloid Z. Z. Polym., 218, 1030 (1967) 10.1007/BF01517271Suche in Google Scholar

Hellwege, K.-H., Hennig, J. and Knappe, W., “Anisotropie der Wärmeausdehnung und Wärmeleitung in einachsig verstreckten amorphen Hochpolymeren”, Kolloid Z. Z. Polym., 188, 121127 (1963) 10.1007/BF01499903Suche in Google Scholar

Hine, P., Bonner, M., Ward, I., Swolfs, Y. and Verpoest, I., “The Influence of the Hybridisation Configuration on the Mechanical Properties of Hybrid Self Reinforced Polyamide 12/Carbon Fibre Composites”, Composites Part A, 95, 141151 (2017) 10.1016/j.compositesa.2016.12.029Suche in Google Scholar

Hine, P., Bonner, M., Ward, I., Swolfs, Y., Verpoest, I. and Mierzwa, A., “Hybrid Carbon Fibre/Nylon 12 Single Polymer Composites”, Composites Part A, 65, 1926 (2014) 10.1016/j.compositesa.2014.05.020Suche in Google Scholar

Homberg, W., Biermann, D., Heim, H.-P. (Eds.): Functionally Graded Materials in Industrial Mass Production/Fundamentals, 1st Edition, Verlag Wissenschaftliche Scripten, Auerbach/Vogtl. (2013)Suche in Google Scholar

Jerpdal, L., Åkermo, M., “Influence of Fibre Shrinkage and Stretching on the Mechanical Properties of Self-Reinforced Poly(ethylene terephthalate) Composite”, J. Reinf. Plast. Compos., 33, 16441655 (2014) 10.1177/0731684414541018Suche in Google Scholar

Jerpdal, L., Åkermo, M., Stahlberg, D. and Herzig, A., “Process Induced Shape Distortions of Self-Reinforced Poly(ethylene terephthalate) Composites”, Compos. Struct., 193, 2934 (2018) 10.1016/j.compstruct.2018.03.038Suche in Google Scholar

Jerpdal, L., Stahlberg, D. and Åkermo, M., “Influence of Fibre Stretching on the Microstructure of Self-Reinforced Poly(ethylene terephthalate) Composite”, J. Reinf. Plast. Compos., 35, 16341641 (2016) 10.1177/0731684416662328Suche in Google Scholar

Kurabayashi, K., “Anisotropic Thermal Properties of Solid Polymers”, Int. J. Thermophys., 22, 277288 (2001) 10.1023/A:1006728223978Suche in Google Scholar

Kurabayashi, K., Goodson, K. E., “Impact of Molecular Orientation on Thermal Conduction in Spin-Coated Polyimide Films”, J. Appl. Phys., 86, 1925 (1999) 10.1063/1.370989Suche in Google Scholar

Mesquita, F., van Gysel, A., Selezneva, M., Swolfs, Y., Lomov, S. V. and Gorbatikh, L., “Flexural Behaviour of Corrugated Panels of Self-Reinforced Polypropylene Hybridised with Carbon Fibre: An Experimental and Modelling Study”, Composites Part B, 153, 437444 (2018) 10.1016/j.compositesb.2018.09.017Suche in Google Scholar

Novichenok, L. N., Ovchinnikova, S. M., “Thermal Conductivity of Certain Oriented Polymers”, J. Eng. Phys. Thermophys., 42, 648651 (1982) 10.1007/BF00835097Suche in Google Scholar

Olley, R., Hodge, A. and Bassett, D., “A Permanganic Etchant for Polyolefines”, J. Polym. Sci., Part B: Polym. Phys., 17, 627643 (1979) 10.1002/pol.1979.180170406Suche in Google Scholar

Paßmann, D., “Prozessinduzierte Gradierung eigenverstärkter Polypropylen-Faserverbunde beim Heißkompaktieren und Umformen”, PPH ZAPOL Dmochowski, Sobczyk Spółka Jawna, Szczecin (2009)Suche in Google Scholar

Pietralla, M., “Anisotrope Wärmeleitfähigkeit in Polymeren”, Colloid Polym. Sci., 259, 111129 (1981) 10.1007/BF01384958Suche in Google Scholar

Poulikidou, S., Jerpdal, L., Björklund, A. and Åkermo, M., “Environmental Performance of Self-Reinforced Composites in Automotive Applications – Case Study on a Heavy Truck Component”, Mater. Des., 103, 321329 (2016) 10.1016/j.matdes.2016.04.090Suche in Google Scholar

Ries, A.: Thermo-mechanische Gradierung eigenverstärkter Polypropylen-Composite, Kassel University Press, Kassel (2015)Suche in Google Scholar

Schneider, C., Kazemahvazi, S., Åkermo, M. and Zenkert, D., “Compression and Tensile Properties of Self-Reinforced Poly(ethylene terephthalate)-Composites”, Polym. Test., 32, 221230 (2013) 10.1016/j.polymertesting.2012.11.002Suche in Google Scholar

Selezneva, M., Swolfs, Y., Katalagarianakis, A., Ichikawa, T., Hirano, N. and Taketa, I., “The Brittle-to-Ductile Transition in Tensile and Impact Behavior of Hybrid Carbon Fibre/Self-Reinforced Polypropylene Composites”, Composites Part A, 109, 2030 (2018) 10.1016/j.compositesa.2018.02.034Suche in Google Scholar

Swolfs, Y., Cuyper, P., Callens, M., Verpoest, I. and Gorbatikh, L., “Hybridisation of Two Ductile Materials – Steel Fibre And Self-Reinforced Polypropylene Composites”, Composites Part A, 100, 4854 (2017) 10.1016/j.compositesa.2017.05.001Suche in Google Scholar

Tang, J., Swolfs, Y., Yang, M., Michielsen, K., Ivens, J., Lomov, S. and Gorbatikh, L., “Discontinuities as a Way to Influence the Failure Mechanisms and Tensile Performance of Hybrid Carbon Fiber/Self-Reinforced Polypropylene Composites”, Composites Part A, 107, 354365 (2018) 10.1016/j.compositesa.2018.01.020Suche in Google Scholar

Zhang, J., Peijs, T., “Self-Reinforced Poly(ethylene terephthalate) Composites by Hot Consolidation of Bi-Component PET Yarns”, Composites Part A, 41, 964972 (2010) 10.1016/j.compositesa.2010.03.012Suche in Google Scholar

Zhu, B., Liu, J., Wang, T., Han, M., Valloppilly, S., Xu, S. and Wang, X., “Novel Polyethylene Fibers of Very High Thermal Conductivity Enabled by Amorphous Restructuring”, ACS Omega, 2, 39313944 (2017) 10.1021/acsomega.7b00563Suche in Google Scholar PubMed PubMed Central

Received: 2019-03-07
Accepted: 2019-07-04
Published Online: 2019-11-01
Published in Print: 2019-11-21

© 2019, Carl Hanser Verlag, Munich

Heruntergeladen am 30.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/217.3812/pdf
Button zum nach oben scrollen