Startseite Mathematical Modeling of Electrically Charged Viscoelastic Jet
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Mathematical Modeling of Electrically Charged Viscoelastic Jet

  • M. Samiee und M. Rafizadeh
Veröffentlicht/Copyright: 31. Juli 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this project we performed a theoretical study of the electrospinning process. The electrospinning process typically consists of two phases. For the first part, we have studied Feng's model (2003) and used Phan-Thien Tanner (PTT) rheological model instead of Giesekus model which was used by Feng. A theoretical model for the jet is derived by using a thin filament approximation, and the resulting differential equations are solved numerically. For the second part of the jet, the basis of the modeling is the bead-spring approach first proposed by Reneker et al. (2000) and we added the evaporation effect to Reneker's model. The three dimensional equations describing the dynamics of the bending of electrospun jets are derived and the calculated behavior is compared with experimental observations of jets.


*Correspondence address, Mail address: Matin Samiee, Department of Polymer, South Tehran Branch, Islamic Azad University, Tehran, Iran, P.O. Box 1584743311, Tehran, Iran, E-mail:

References

Ahn, Y. C., Park, S. K., Kim, G. T., Hwang, Y. J., Lee, C. G., Shin, H. S., and Lee, J. K., “Development of High Efficiency Nanofilters Made of Nanofibers”, Curr. Appl. Phys., 6, 1030–1035 (2006) 10.1016/j.cap.2005.07.013Suche in Google Scholar

Chang, C., Tran, V. H., Wang, J., Fuh, Y. K. and Lin, L., “Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency”, Nano Letters, 10, 726731, (2010) PMid:20099876; 10.1021/nl9040719Suche in Google Scholar PubMed

Chew, S. Y., Mi, R., Hoke, A. and Leong, K. W., “The Effect of the Alignment of Electrospun Fibrous Scaffolds on Schwann Cell Maturation”, Biomaterials, 29, 653–661 (2008) PMid:17983651; 10.1016/j.biomaterials.2007.10.025Suche in Google Scholar PubMed PubMed Central

Cui, W., Zhou, Y. and Chang, J., “Electrospun Nanofibrous Materials for Tissue Engineering and Drug Delivery”, Sci. Technol. Adv. Mater., 11, 1–11 (2010) PMid:27877323; 10.1088/1468-6996/11/1/014108Suche in Google Scholar PubMed PubMed Central

Doshi, J., Reneker, D. H., “Electrospinning and Applications of Electrospun Fibers”, J. Electrostat., 35, 151–160 (1995) 10.1016/0304-3886(95)00041-8Suche in Google Scholar

Feng, J. J., “Stretching of a Straight Electrically Charged Viscoelastic Jet”, J. Non-Newtonian Fluid Mech., 116, 55–70 (2003) 10.1016/S0377-0257(03)00173-3Suche in Google Scholar

Feng, J. J., “The Stretching of an Electrified Non-Newtonian Jet: A Model for Electrospinning”, Phys. Fluids, 14, 3912–3926 (2002) 10.1063/1.1510664Suche in Google Scholar

Grätzel, M., “Dye-Sensitized Solid-State Hetero Junction Solar Cells”, MRS Bull., 30, 23–27 (2005) 10.1557/mrs2005.4Suche in Google Scholar

Hohman, M. M., Shin, M., Rutledge, G. and Brenner, M. P., “Electrospinning and Electrically Forced Jets: I. Stability Theory”, Phys. Fluids, 13, 2201–2220 (2001a) 10.1063/1.1383791Suche in Google Scholar

Hohman, M. M., Shin, M., Rutledge, G. and Brenner, M. P., “Electrospinning and Electrically Forced Jets: II. Applications”, Phys. Fluids, 13, 2221–2236 (2001b) 10.1063/1.1383791Suche in Google Scholar

Im, J. S., Kang, S. C., Lee, S, H.andLee, Y. S., “Improved Gas Sensing of Electrospun Carbon Fibers Based on Pore Structure, Conductivity and Surface Modification”, Carbon, 48, 2573–2581 (2010) 10.1016/j.carbon.2010.03.045Suche in Google Scholar

Jin, H. J., Fridrikh, S. V., Rutledge, G. C. and Kaplan, D. L., “Electrospinning Bombyxmori Silk with Poly(ethylene oxide)”, Biomacromolecules, 3, 1233–1239 (2002) PMid:12425660; 10.1021/bm025581uSuche in Google Scholar PubMed

Kirichenko, V. N., Petryanov-Sokolov, V. I., Suprun, N. N. and Shutov, A. A., “Asymptotic Radius of a Slightly Conducting Liquid Jet in an Electric Field”, Sov. Phys. Dokl., 31, 611–613 (1986) 10.1063//1.3057553Suche in Google Scholar

Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P., “Numerical Recipes in Fortran 77”, 2nd Edition, Cambridge University Press, New York, p. 753763 (1992) 10.1017/CBO97811075900205Suche in Google Scholar

Reneker, D. H., Yarin, A. L., Fong, H. and Koombhongse, S., “Bending Instability of Electrically Charged Liquid Jets of Polymer Solutions in Electrospinning”, J. Appl. Phys., 87, 4531–4547 (2000) 10.1063/1.373532Suche in Google Scholar

Saville, D. A., “Electrohydrodynamics: The Taylor–Melcher Leaky Dielectric Model”, Ann. Rev. Fluid Mech., 29, 27–64 (1997) 10.1146/annurev.fluid.29.1.27Suche in Google Scholar

Spivak, A. F., Dzenis, Y. A. and Reneker, D. H., “A Model of the Steady State Jet in the Electrospinning Process”, Mech. Res. Commun., 27, 37–42 (2000) 10.1016/S0093-6413(00)00060-4Suche in Google Scholar

Yarin, A. L., Koombhongse, S. and Reneker, D. H.Bending Instability in Electrospinning of Nanofibers”, J. Appl. Phys., 89, 3018–3026 (2001) 10.1063/1.1333035Suche in Google Scholar

Received: 2016-12-15
Accepted: 2017-04-23
Published Online: 2017-07-31
Published in Print: 2017-08-11

© 2017, Carl Hanser Verlag, Munich

Heruntergeladen am 23.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/217.3405/html
Button zum nach oben scrollen