Startseite Influence of Melt-Mixing Process Conditions on Mechanical Performance of Organoclay/Fluoroelastomer Nanocomposites
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Influence of Melt-Mixing Process Conditions on Mechanical Performance of Organoclay/Fluoroelastomer Nanocomposites

  • M. Khajehpour und U. Sundararaj
Veröffentlicht/Copyright: 2. März 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this study, Cloisite 20A, an organically modified Montmorillonite (Mnt), has been incorporated into Fluoroelastomer (FKM) through melt intercalation technique. Since the nanocomposite preparation method and conditions, and consequently, the resulting morphology play a critical role in the final properties, the effect of different process conditions such as time, temperature, and shear rate on the vulcanization, thermal and mechanical properties have been investigated. The morphology of nanocomposites, prepared at different melt-mixing conditions, was studied using X-ray diffraction (XRD). Rheological, thermal and mechanical behaviors were investigated by moving die rheometer (MDR), thermal gravimetric analysis (TGA), and tensile strength test respectively. Also, the crosslinking density has been measured for the nanocomposites. The best mechanical performance of clay/FKM nanocomposites was attained by optimization of the melt-mixing conditions. We achieved the following enhancements for FKM by clay incorporation: enhancement of tensile strength up to 70 %; elongation up to 94 %; and modulus up to 405 %. Process temperature was found to have a critical role in the final properties of the nanocomposites, while mixing residual time and shear rate had a moderate effect. The most desirable properties and curing behaviors, including highest maximum torques, cure rates, crosslinking densities, fast crosslinking kinetics, high intercalation and best improved tensile strengths, resulted with specific combination of melt-mixing parameters.


*Correspondence address, Mail address: Uttandaraman Sundararaj, Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW Calgary, Alberta, Canada, T2N 1N4,. E-mail:

References

Ahmed, K., Nizami, S. S., Raza, N. Z., Kamaluddin, S. and Mahmood, K., “An Assessment of Rice Husk Ash Modified, Marble Sludge Loaded Natural Rubber Hybrid Composites”, J. Mater. Environ. Sci., 4, 205216 (2013)Suche in Google Scholar

Al-haj Ali, M., Elleithy, R. H., “Viscoelastic Properties of Polypropylene/Organo-Clay Nano-Composites Prepared Using Miniature Lab Mixing Extruder from Masterbatch”, J. Appl. Polym. Sci., 121, 2736 (2011) 10.1002/app.33573Suche in Google Scholar

Ameduri, B., Boutevin, B. and Kostov, G., “Fluoroelastomers: Synthesis, Properties and Applications”, Prog. Polym. Sci., 26, 105187 (2001) 10.1016/S0079-6700(00)00044-7Suche in Google Scholar

ASTM International, ASTM D-2084, in: “Rubber Property-Vulcanization Using Oscillating Disk Cure-Meter”, West Conshohocken, PA, (2011), www.astm.org. 10.1520/D2084-11Suche in Google Scholar

ASTM International, ASTM D-5289, in: “Rubber Property-Vulcanization Using Rotorless Cure Meter”, West Conshohocken, PA (2012), www.astm.org. 10.1520/D5289-12Suche in Google Scholar

ASTM International, ASTM D-412-06a, in: Vulcanized Rubber and Thermoplastic Elastomers Tension, West Conshohocken, PA (2012), www.astm.org. 10.1520/D0414-06AR13Suche in Google Scholar

Borse, N. K., Kamal, M. R., “Melt Processing Effects on the Structure and Mechanical Properties of PA-6/Clay Nanocomposites”, Polym. Eng. Sci., 46, 10941103 (2006) 10.1002/pen.20578Suche in Google Scholar

Burgentzlé, D., Duchet, J., Gerard, J. F., Jupin, A. and Fillon, B., “Solvent-Based Nanocomposite Coatings: I. Dispersion of Organophilic Montmorillonite in Organic Solvents”, J. Colloid Interface Sci., 278, 2639 (2004). 10.1016/j.jcis.2004.05.015Suche in Google Scholar

Chen, G. X., Choi, J. B. and Yoon, J. S., “The Role of Functional Group on the Exfoliation of Clay in Poly(l-lactide)”, Macromol. Rapid Commun., 26, 183187 (2005) 10.1002/marc.200400452Suche in Google Scholar

Das, A., Stöckelhuber, K. W., Jurk, R., Jehnichen, D. and Heinrich, G., “A General Approach to Rubber-Montmorillonite Nanocomposites: Intercalation of Stearic Acid”, Appl. Clay Sci., 51, 117125 (2011) 10.1016/j.clay.2010.11.012Suche in Google Scholar

Dennis, H. R., Hunter, D. L., Chang, D., Kim, S., White, J. L., Cho, J. W. and Paul, D. R., “Effect of Melt Processing Conditions on the Extent of Exfoliation in Organoclay-Based Nanocomposites”, Polymer, 42, 95139522 (2001) 10.1016/S0032-3861(01)00473-6Suche in Google Scholar

Gao, J., Gu, Z., Song, G., Li, P. and Liu, W., “Preparation and Properties of Organo-Montmorillonite/Fluoroelastomer Nanocomposites”, Appl. Clay Sci., 42, 272275 (2008) 10.1016/j.clay.2008.01.007Suche in Google Scholar

Gatos, K. G., Thomann, R. and Karger-Kocsis, J., “Characteristics of Ethylene Propylene Diene Monomer Rubber/Organoclay Nanocomposites Resulting from Different Processing Conditions and Formulations”, Polym. Int., 53, 11911197 (2004) 10.1002/pi.1556Suche in Google Scholar

Ghasemi, I., Karrabi, M., Mohammadi, M. and Azizi, H., “Evaluating the Effect of Processing Conditions and Organoclay Content on the Properties of Styrene-Butadiene Rubber/Organoclay Nanocomposites by Response Surface Methodology”, Polym. Lett., 4, 6270 (2010) 10.3144/expresspolymlett.2010.11Suche in Google Scholar

Herchova, J., Komadel, P. and Chodak, I., “Effect of Montmorillonite Modification on Mechanical Properties of Vulcanized Natural Rubber Composites”, J. Mater. Sci., 43, 20122017 (2008) 10.1007/s10853-007-2438-4Suche in Google Scholar

Herrera, N. N., Letoffe, J. M., Putaux, J. L., David, L., and Bourgeat-Lami, E., “Aqueous Dispersions of Silane-Functionalized Laponite Clay Platelets. A First Step toward the Elaboration of Water-Based Polymer/Clay Nanocomposites”, Langmuir, 20, 15641571 (2004) 10.1021/la0349267Suche in Google Scholar

Hussain, F., Hojjati, M., Okamoto, M., and Gorga, R. E., “Polymer-Matrix Nanocomposites, Processing, Manufacturing, and Application: An Overview”, Compos. Mater., 40, 15111575 (2006) 10.1177/0021998306067321Suche in Google Scholar

Kader, M. A., Lyu, M. Y. and Nah, C., “A Study on Melt Processing and Thermal Properties of Fluoroelastomer Nanocomposites”, Compos. Sci. Technol., 66, 14311443 (2006) 10.1016/j.compscitech.2005.09.001Suche in Google Scholar

Lakshminarayanan, S., “Synthesis, Characterization and Production of Fluoroelastomer/Clay Nanocomposites”, MSc Thesis, Department of Chemical and Materials Engineering, University of Alberta, Edmonton (2009a)Suche in Google Scholar

Lakshminarayanan, S., Lin, B., Gelves, G. A. and Sundararaj, U., “Effect of Clay Surfactant Type and Clay Content on the Rheology and Morphology of Uncured Fluoroelastomer/Clay Nanocomposites Prepared by Melt-Mixing”, J. Appl. Polym. Sci., 112, 35973604 (2009b) 10.1002/app.29679Suche in Google Scholar

Lakshminarayanan, S., Gelves, G. A. and Sundararaj, U., “Vulcanization Behavior and Mechanical Properties of Organoclay Fluoroelastomer Nanocomposites”, J. Appl. Polym. Sci., 124, 50565063 (2012)Suche in Google Scholar

Maiti, M., Bhowmick, A. K., “Effect of Polymer-Clay Interaction on Solvent Transport Behavior of Fluoroelastomer-Clay Nanocomposites and Prediction of Aspect Ratio of Nanoclay”, J. Appl. Polym. Sci., 105, 435445 (2007) 10.1002/app.26052Suche in Google Scholar

Mitra, S., Siahkali, A. G., Kingshott, P., Almdal, K., Rehmeier, H. K. and Christensen, A. G., “Chemical Degradation of Fluoroelastomer in an Alkaline Environment”, Polym. Degrad. Stab., 83, 195206 (2004) 10.1016/S0141-3910(03)00235-0Suche in Google Scholar

Mittal, V., Kim, J. K. and Pal, K.: Recent Advances in Elastomeric Nanocomposites, Volume 9, Springer, Berlin, Heidelberg (2011) 10.1007/978-3-642-15787-5Suche in Google Scholar

Modesti, M., Lorenzetti, A., Bon, D. and Besco, S., “Effect of Processing Conditions on Morphologyand Mechanical Properties of Compatibilized Polypropylene Nanocomposite”, Polymer, 46, 1023710245 (2005) 10.1016/j.polymer.2005.08.035Suche in Google Scholar

Naderi, G., Razavi-Nouri, M., Taghizadeh, E., Lafleur, P. G. and Dubois, C., “Preparation of Thermoplastic Elastomer Nanocomposites Based on Polyamide-6/Polyepichlorohydrin-Co-Ethylene Oxide”, Polym. Eng. Sci., 51, 278284 (2011) 10.1002/pen.21824Suche in Google Scholar

Park, M., Shim, I. K., Jung, E. Y. and Choy, J. H., “Modification of External Surface of Laponite by Silane Grafting”, J. Phys. Chem. Solids, 65, 499501 (2004) 10.1016/j.jpcs.2003.10.031Suche in Google Scholar

Paul, D. R., Robeson, L. M., “Polymer Nanotechnology: Nanocomposites”, Polymer, 49, 31873204 (2008). 10.1016/j.polymer.2008.02.039Suche in Google Scholar

Qian, Z., Zhou, H., Xu, X., Ding, Y., Zhang, S. and Yang, M., “Effect of the Grafted Silane on the Dispersion and Orientation of Clay in Polyethylene Nanocomposites”, Polym. Compos., 30, 12341242 (2009) 10.1002/pc.20683Suche in Google Scholar

Ray, S. S., Okamoto, M., “Polymer/Layered Silicate Nanocomposites: A Review from Preparation to Processing”, Prog. Polym. Sci., 28, 15391641 (2003) 10.1016/j.progpolymsci.2003.08.002Suche in Google Scholar

Shanks, R. A., Kong, I.: Advanced Structured Materials, Volume 11, Springer, Berlin, Heidelberg (2013)10.1007/978-3-642-20925-3_2Suche in Google Scholar

Shanmugharaj, A. M., Rhee, K. Y. and Ryua, S. H., “Influence of Dispersing Medium on Grafting of Aminopropyltriethoxysilane in Swelling Clay Materials”, J. Colloid Interface Sci., 298, 854859 (2006) 10.1016/j.jcis.2005.12.049Suche in Google Scholar PubMed

Shen, W., He, H., Zhu, J., Yuan, P. and Frost, R. L., “Grafting of Montmorillonite with Different Functional Silanes via Two Different Reaction Systems”, J. Colloid Interface Sci., 313, 268273 (2007) 10.1016/j.jcis.2007.04.029Suche in Google Scholar PubMed

Singhal, A. K.: Oscillating Disk Rheometer, Technical Datasheet, Future Foundation Company (2003)Suche in Google Scholar

Valsecchi, R., Torlaj, L., Turri, S., Tonelli, C. and Levi, M., “Barrier Properties in Hydrogenated Acrylonitrile Butadiene Rubber Compounds Containing Organoclays and Perfluoropolyether Additives”, J. Appl. Polym. Sci., 119, 34763482 (2011) 10.1002/app.32995Suche in Google Scholar

Wan, C., Dong, W. and Zhang, Y., “Intercalation Process and Rubber-Filler Interactions of Polybutadiene Rubber/Organoclay Nanocomposites”, J. Appl. Polym. Sci., 107, 650657 (2008) 10.1002/app.27131Suche in Google Scholar

Zhang, M., Sundararaj, U., “Thermal, Rheological and Mechanical Behaviors of LLDPE/PEMA/Clay Nanocomposites: Effect of Interaction between Polymer, Compatibilizer and Nanofiller”, Macromol. Mater. Eng., 291, 697706 (2006) 10.1002/mame.200500399Suche in Google Scholar

Zhu, L., Xanthos, M., “Effects of Process Conditions and Mixing Protocols on Structure of Extruded Polypropylene Nanocomposites”, J. Appl. Polym. Sci., 93, 18911899 (2004) 10.1002/app.20658Suche in Google Scholar

Received: 2014-10-07
Accepted: 2015-09-03
Published Online: 2016-03-02
Published in Print: 2016-03-02

© 2016, Carl Hanser Verlag, Munich

Heruntergeladen am 6.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/217.3031/html
Button zum nach oben scrollen