Crystallization Kinetics for PP/EPDM/Nano-CaCO3 Composites – The Influence of Nanoparticles Distribution
-
L. Gong
, B. Yin , L.-P. Li and M.-B. Yang
Abstract
The primary aim of this paper is to provide an insight on the effect of the distribution of calcium carbonate nanoparticles (nano-CaCO3) on the isothermal crystallization kinetics in Polypropylene (PP)/ethylene-propylene-diene terpolymer (EPDM)/nano-CaCO3 composites prepared by different compounding procedures. PP/EPDM/CaCO3 composites were prepared by two compounding procedures (direct compounding: mixed all three solid materials together; multistep compounding: the melted EPDM/CaCO3 master batch in a single screw extruder blended with melted PP in twin-screw extruder via injecting into the twin-screw extruder from a lateral port at the melting section of the twin-screw extruder). Morphological observation showed that abundant CaCO3 particles concentrated around EPDM dispersed phase in the multistep compounding composite, essentially different from the respectively dispersed morphology of CaCO3 particles and EPDM domains in the matrix for the direct compounding composite. Moreover, better dispersion of CaCO3 particles in the multistep compounding composite was observed comparing to the direct compounding composite. Futhermore, a pronounced improvement of the crystallization half time (t1/2), rate of crystallization (G) was achieved in the multistep compounding composite, which may originate from the better dispersion of CaCO3 particles providing larger nucleation density and the collaborative nucleation of EPDM and CaCO3 during the isothermal crystallization.
References
AvramiM., “Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III”, J. Chem. Phys., 9, 177–184 (1941) 10.1063/1.1750872Search in Google Scholar
AvramiM., “Kinetics of Phase Change. I General Theory”, J. Chem. Phys., 7, 1103–1112 (1939) 10.1063/1.1750380Search in Google Scholar
AvramiM., “Kinetics of Phase Change. II Transformation-Time Relations for Random Distribution of Nuclei”, J. Chem. Phys., 9, 212–224 (1940) 10.1063/1.1750631Search in Google Scholar
BhattacharyaM., BhowmickA. K., “Polymer-Filler Interaction in Nanocomposites: New Interface Area Function to Investigate Swelling Behavior and Young's Modulus”, Polymer, 49, 4808–4818 (2008) 10.1016/j.polymer.2008.09.002Search in Google Scholar
BlomenhoferM., GanzlebenS., HanftD., SchmidtH. W., KristiansenM., SmithP., StollK., MaderD. and HoffmannK., “‘Designer’ Nucleating Agents for Polypropylene”, Macromolecules, 38, 3688–3695 (2005) 10.1021/ma0473317Search in Google Scholar
BrücknerS., MeilleS. V., PetracconeV. and PirozziB., “Polymorphism in Isotactic Polypropylene”, Prog. Polym. Sci., 16, 361–404 (1991) 10.1016/0079-6700(91)90023-ESearch in Google Scholar
ClarkE. J., HoffmanJ. D., “Regime III Crystallization in Polypropylene”, Macromolecules, 17, 878–885 (1984) 10.1021/ma00134a058Search in Google Scholar
DevauxE., ChabertB., “Nature and Origin of the Transcrystalline Interphase of Polypropylene/Glass-Fibre Composites after a Shear Stress”, Polym. Commun., 32, 464–468 (1991)Search in Google Scholar
FerroD. R., MeilleS. V. and BrücknerS., “Energy Calculations for Isotactic Polypropylene: A Contribution to Clarify the B Crystalline Structure”, Macromolecules, 31, 6926–6934 (1998) 10.1021/ma9804592Search in Google Scholar
FujiwaraY., “Double-Melting Behavior of the B-Phase of Isotactic Polypropylene”, Colloid Polym. Sci., 253, 273–283 (1975) 10.1007/BF02352075Search in Google Scholar
GongL., YinB., LiL.-P. and YangM.-B., “The Effects of Different Processing Methods on the Morphology and Properties of PP/EPDM/Nano-CaCO3 Ternary Blend” J. Macromol. Sci. B, 50, 806–820 (2011) 10.1080/00222348.2010.483374Search in Google Scholar
GuanY., WangS. H., ZhengA. and XiaoH. N., “Crystallization Behaviors of Polypropylene and Functional Polypropylene”, J. Appl. Polym. Sci., 88, 872–877 (2003) 10.1002/app.11668Search in Google Scholar
GuoH. F., PackirisamyS., GvozdicN. V. and MeierD. J., “Prediction and Manipulation of the Phase Morphologies of Multiphase Polymer Blends. 1. Ternary Systems”, Polymer, 38, 785–794 (1997) 10.1016/S0032-3861(96)00571-XSearch in Google Scholar
HanimH., FuadM. Y. A., ZarinaR. Z., IshakA. M. and HassanA., “Properties and Structure of Polypropylene/Polyethylene-Octene Elastomer/Nano CaCO3 Composites”, J. Thermoplast. Compos., 21, 123–140 (2008)Search in Google Scholar
HoffmanJ. D., MillerR. L., “Kinetics of Crystallization from the Melt and Chain Folding in Polyethylene Fractions Revisited: Theory and Experiment”, Polymer, 38, 3151–3212 (1997) 10.1016/S0032-3861(97)00071-2Search in Google Scholar
Karger-KocsisJ., VargaJ., “Effects of B-A Transformation on the Static and Dynamic Tensile Behavior of Isotactic Polypropylene”, J. Appl. Polym. Sci., 62, 291–300 (1996) 10.1002/(SICI)1097-4628(19961010)62:2<291::AID-APP4>3.0.CO;2-SSearch in Google Scholar
Karger-KocsisJ.: Polypropylene: Structure, Blends and Composite, Chapman & Hall, New York (1995) 10.1007/978-94-011-0521-7Search in Google Scholar
KeithH. D., PaddenF. J., WalterN. M. and WyckoffH. W., “Evidence for a Second Crystal Form of Polypropylene”, J. Appl. Phys., 30, 1485–1488 (1959) 10.1063/1.1734986Search in Google Scholar
KolmogoroffA. N., “On the Statistical Theory of the Crystallization of Metals”, Bull. Akad. Sci. USSR, Math. Ser., 1, 355–359 (1937)Search in Google Scholar
KudvaR. A., KeskkulaH. and PaulD. R., “Properties of Compatibilized Nylon 6/ABS Blends Part II. Effects of Compatibilizer Type and Processing History”, Polymer, 41, 239–258 (2000) 10.1016/S0032-3861(99)00105-6Search in Google Scholar
LauritzenJ. L., HoffmanJ. D., “Extension of Theory of Growth of Chain-Folded Polymer Crystals to Large Undercoolings”, J. Appl. Phys., 44, 4340–4352 (1973) 10.1063/1.1661962Search in Google Scholar
LeugeringH. J., KirschG., “Effect of Crystallization from Oriented Melts on Crystal Structure of Isotactic Polypropylene”, Angew. Makromol. Chem., 33, 17–23 (1973) 10.1002/apmc.1973.050330102Search in Google Scholar
LeugeringH., “B-Nucleating Agent for Polypropylene”, J. Makromol. Chem., 109, 204–216 (1967) 10.1002/macp.1967.021090118Search in Google Scholar
LiJ. X., CheungW. L. and JiaD. M., “A Study on the Heat of Fusion of Beta-Polypropylene”, Polymer, 40, 1219–1222 (1999) 10.1016/S0032-3861(98)00345-0Search in Google Scholar
LiL.-P., WeiJ.-L., YinB. and YangM.-B., “Effects of Spatial Confinement and Selective Distribution of CB Particles on the Crystallization Behavior of Polypropylene”, J. Appl. Polym. Sci., 123, 3652–3661 (2012) 10.1002/app.35032Search in Google Scholar
LotzB., WittmannJ. C. and LovingerA. J., “Structure and Morphology of Poly(propylenes): A Molecular Analysis”, Polymer, 37, 4979–4992 (1996) 10.1016/0032-3861(96)00370-9Search in Google Scholar
LovingerA. J., ChuaJ. O. and GryteC. C., “Studies on the A and B Forms of Isotactic Polypropylene by Crystallization in a Temperature Gradient”, J. Polym. Sci. Polym. Phys., 15, 641–656 (1977) 10.1002/pol.1977.180150405Search in Google Scholar
MaC. G., MaiY. L., RongM. Z., RuanW. H. and ZhangM. Q., “Phase Structure and Mechanical Properties of Ternary Polypropylene/Elastomer/Nano-CaCO3 Composites”, Compos. Sci. Techno., 67, 2997–3005 (2007) 10.1016/j.compscitech.2007.05.022Search in Google Scholar
MeilleS. V., BrücknerS. and PorzioW., “Γ-Isotactic Polypropylene. A Structure with Nonparallel Chain Axes”, Macromolecules, 23, 4114–4121 (1990)10.1021/ma00220a014Search in Google Scholar
NaffakhM., MarcoC. and EllisG., “Novel Polypropylene/Inorganic Fullerene-Like WS2 Nanocomposites Containing A B-Nucleating Agent: Isothermal Crystallization and Melting Behavior”, J. Phys. Chem. B, 116, 1788–1795 (2012) 10.1021/jp2099703Search in Google Scholar
NaffakhM., MarcoC. and Gómez-FatouM. A., “Isothermal Crystallization Kinetics of Novel Isotactic Polypropylene/MoS2 Inorganic Nanotube Nanocomposites”, J. Phys. Chem. B, 115, 2248–2255 (2011) 10.1021/jp1115788Search in Google Scholar
NaffakhM., MartinZ., FanegasN., MarcoC., GomezM. A. and JimenezI., “Influence of Inorganic Fullerene-Like WS2 Nanoparticles on the Thermal Behavior of Isotactic Polypropylene”, J. Polym. Sci. B, 45, 2309–2321 (2007) 10.1002/polb.21231Search in Google Scholar
NogalesA., HsiaoB. S., SomaniR. H., SrinivasS., TsouA. H., Balta-CallejaF. J. and EzquerraT. A., “Shear-Induced Crystallization of Isotactic Polypropylene with Different Molecular Weight Distributions: In Situ Small- and Wide-Angle X-Ray Scattering Studies” Polymer, 42, 5247–5256 (2001) 10.1016/S0032-3861(00)00919-8Search in Google Scholar
NortonD. T., KellerA., “The Spherulitic and Lamellar Morphology of Melt-Crystallized Isotactic Polypropylene”, Polymer, 26, 704–716 (1985)10.1016/0032-3861(85)90108-9Search in Google Scholar
PaddenF. J., KeithH. D., “Spherulitic Crystallization in Polypropylene”, J. Appl. Phys., 30, 1479–1484 (1959) 10.1063/1.1734985Search in Google Scholar
PremphetK., HoranontP., “Phase Structure and Property Relationships in Ternary Polypropylene/Elastomer/Filler Composites: Effect of Elastomer Polarity”, J. Appl. Polym. Sci., 76, 1929–1939 (2000a) 10.1002/(SICI)1097-4628(20000624)76:13<1929::AID-APP10>3.0.CO;2-HSearch in Google Scholar
PremphetK., HoranontP., “Phase Structure of Ternary Polypropylene/Elastomer/Filler Composites: Effect of Elastomer Polarity”, Polymer, 41, 9283–9290 (2000b) 10.1016/S0032-3861(00)00303-7Search in Google Scholar
PukanszkyB., TudosF., KolarikJ. and LednickyF., “Ternary Composites of Polypropylene, Elastomer, and Filler: Analysis of Phase Structure Formation”, Polym. Compos., 11, 98–104 (1990) 10.1002/pc.750110205Search in Google Scholar
RakaL., SorrentinoA. and Bogoeva-GacevaG., “Isothermal Crystallization Kinetics of Polypropylene Latex-Based Nanocomposites with Organo-Modified Clay”, J. Polym. Sci. B, 48, 1927–1938 (2010) 10.1002/polb.22069Search in Google Scholar
SumitaM., SakataK., AsaiS., MiyasakaK. and NakagawaH., “Dispersion of Fillers and the Electrical Conductivity of Polymer Blends Filled with Carbon Black”, Polym. Bull., 25, 265–271 (1991) 10.1007/BF00310802Search in Google Scholar
TaoR., LiuZ. Y., YangW. and YangM. B., “Effect of Dispersion Condition of Calcium Carbonate on the Crystallization and Melting Behavior of Polypropylene/CaCO3 Nanocomposites”, Polym. Plast. Technol., 47, 490–495 (2008) 10.1080/03602550801952276Search in Google Scholar
JonesA. Turner, AizlewoodJ. M. and BeckettD. R., “Crystalline Forms of Isotactic Polypropylene”, Makromol. Chem., 75, 134–158 (1964) 10.1002/macp.1964.020750113Search in Google Scholar
VargaJ., “Characteristics of Cylindritic Crystallization of Polypropylene”, Angew. Macromol. Chem., 112, 191–203 (1983) 10.1002/apmc.1983.051120111Search in Google Scholar
VargaJ., “Supermolecular Structure of Isotactic Polypropylene”, J. Mater. Sci., 27, 2557–79 (1992) 10.1007/BF00540671Search in Google Scholar
VargaJ., KocsisJ. Karger, “Rules of Supermolecular Structure Formation in Sheared Isotactic Polypropylene Melts”, J. Polym. Sci. B, 34, 657–670 (1996) 10.1002/(SICI)1099-0488(199603)34:4<657::AID-POLB6>3.0.CO;2-NSearch in Google Scholar
VargaJ., StollK., MenyhardA. and HorvathZ., “Crystallization of Isotactic Polypropylene in the Presence of a Beta-Nucleating Agent Based on a Trisamide of Trimesic Acid”, J. Appl. Polym. Sci., 121, 1469–1480 (2011) 10.1002/app.33685Search in Google Scholar
XuW. B., LiangG. D., ZhaiH. B., TangS. P., HangG. P. and PanW. P., “Preparation and Crystallization Behaviour of PP/PP-G-MAH/Org-MMT Nanocomposite”, Eur. Polym. J., 39, 1467–1474 (2003) 10.1016/S0014-3057(03)00015-6Search in Google Scholar
YangH., ZhangX., QuC., LiB., ZhangL., ZhangQ. and FuQ., “Largely Improved Toughness of PP/EPDM Blends by Adding Nano-SiO2 Particles”, Polymer, 48, 860–869 (2007) 10.1016/j.polymer.2006.12.022Search in Google Scholar
YinB., ZhaoY., YuR.-Z., AnH.-N. and YangM.-B., “Morphology Development of PC/PE Blends during Compounding in a Twin-Screw Extruder”, Polym. Eng. Sci., 47, 14–25 (2007) 10.1002/pen.20663Search in Google Scholar
© 2015, Carl Hanser Verlag, Munich
Articles in the same Issue
- Contents
- Contents
- Regular Contributed Articles
- Multilayer Coextrusion of Polymer Composites to Develop Organic Capacitors
- Heat Flow Analysis and Efficiency Optimization of Rotational Molding Equipment for Large Plastic Products
- Thermorheology of Polyethylene Wax Modified Sulfur Asphalt
- Thermoplastic Cellulose Stearate and Cellulose Laurate: Melt Rheology, Processing and Application Potential
- Crystallization Kinetics for PP/EPDM/Nano-CaCO3 Composites – The Influence of Nanoparticles Distribution
- The Effect of ZnO Nanoparticle Filler on the Attenuation of ZnO/PCL Nanocomposites Using Microstrip Line at Microwave Frequency
- Synthesis and Properties of Nitrogen Heterocycle-Functionalized Core-Shell Hyperbranched Polyester
- Morphology Tuning of Conducting Polyaniline via Static, Liquid-Liquid Interfacial Polymerization Process and its Application for Optical pH Sensing
- Tuning of Final Performances of Soybean Oil–Based Polymer Nanocomposites: Effect of Styryl/Oil Functionalized Intercalant of Montmorillonite Reinforcer
- Processability, Thermal and Mechanical Properties of Rigid PVC/Kaolin Coated with Liquid Macromolecular Modifier Composites
- Numerical Analysis and Evaluation of Process and Geometry Specific Transient Temperature Fields for a New Variation of Gas-Assisted Injection Molding
- Effect of Feeding Strategy on the Properties of PP/Recycled EPDM Blends
- Analysis of a Single Screw Extruder with a Grooved Plasticating Barrel – Part I: The Melting Model
- Melt Elongation Strength and Drawability of LDPE/LLDPE Blends
- PPS News
- PPS News
- Seikei Kakou Abstracts
- Seikei Kakou Abstracts
Articles in the same Issue
- Contents
- Contents
- Regular Contributed Articles
- Multilayer Coextrusion of Polymer Composites to Develop Organic Capacitors
- Heat Flow Analysis and Efficiency Optimization of Rotational Molding Equipment for Large Plastic Products
- Thermorheology of Polyethylene Wax Modified Sulfur Asphalt
- Thermoplastic Cellulose Stearate and Cellulose Laurate: Melt Rheology, Processing and Application Potential
- Crystallization Kinetics for PP/EPDM/Nano-CaCO3 Composites – The Influence of Nanoparticles Distribution
- The Effect of ZnO Nanoparticle Filler on the Attenuation of ZnO/PCL Nanocomposites Using Microstrip Line at Microwave Frequency
- Synthesis and Properties of Nitrogen Heterocycle-Functionalized Core-Shell Hyperbranched Polyester
- Morphology Tuning of Conducting Polyaniline via Static, Liquid-Liquid Interfacial Polymerization Process and its Application for Optical pH Sensing
- Tuning of Final Performances of Soybean Oil–Based Polymer Nanocomposites: Effect of Styryl/Oil Functionalized Intercalant of Montmorillonite Reinforcer
- Processability, Thermal and Mechanical Properties of Rigid PVC/Kaolin Coated with Liquid Macromolecular Modifier Composites
- Numerical Analysis and Evaluation of Process and Geometry Specific Transient Temperature Fields for a New Variation of Gas-Assisted Injection Molding
- Effect of Feeding Strategy on the Properties of PP/Recycled EPDM Blends
- Analysis of a Single Screw Extruder with a Grooved Plasticating Barrel – Part I: The Melting Model
- Melt Elongation Strength and Drawability of LDPE/LLDPE Blends
- PPS News
- PPS News
- Seikei Kakou Abstracts
- Seikei Kakou Abstracts