Home Multilayer Coextrusion of Polymer Composites to Develop Organic Capacitors
Article
Licensed
Unlicensed Requires Authentication

Multilayer Coextrusion of Polymer Composites to Develop Organic Capacitors

  • L. Mondy , R. Mrozek , R. Rao , J. Lenhart , L. Bieg , S. Spangler , M. Stavig , J. Schroeder , M. Winter , C. Diantonio and R. Collins
Published/Copyright: May 5, 2015
Become an author with De Gruyter Brill

Abstract

Multilayer coextrusion is applied to produce a tape containing layers of alternating electrical properties to demonstrate the potential for using coextrusion to manufacture capacitors. To obtain the desired properties, we develop two filled polymer systems, one for conductive layers and one for dielectric layers. We describe numerical models used to help determine the material and processing parameters that impact processing and layer stability. These models help quantify the critical ratios of densities and viscosities of the two layers to maintain stable layers, as well as the effect of increasing the flow rate of one of the two materials. The conducting polymer is based on polystyrene filled with a blend of low-melting-point eutectic metal and nickel particulate filler, as described by Mrozek et al. (2010). The appropriate concentrations of fillers are determined by balancing measured conductivity with processability in a twin screw extruder. Based on results of the numerical models and estimates of the viscosity of emulsions and suspensions, a dielectric layer composed of polystyrene filled with barium titanate is formulated. Despite the fact that the density of the dielectric filler is less than the metallic filler of the conductive phase, as well as rheological measurements that later showed that the dielectric formulation is not an ideal match to the viscosity of the conductive material, the two materials can be successfully coextruded if the flow rates of the two materials are not identical. A measurable capacitance of the layered structure is obtained.


* Mail address: Lisa Monday, Sandia National Laboratories, Albuquerque, NM 87122-0346, USA, E-mail:

References

3M, U.S. Patent 6837698 (2005)Search in Google Scholar

5N Plus, Product Data Sheet, MCP 137/Metspec 281 Alloy (2014)Search in Google Scholar

http://www.5nplus.com/files/4413/9108/3788/Alloy_137_Tech_Data_Sheet_web.pdfSearch in Google Scholar

AlbaK., LaureP. and KhayatR. E., “Transient Two-Layer Thin-Film Flow inside a Channel”, Phys. Rev. E84, 026320 (2011) 10.1103/PhysRevE.84.026320Search in Google Scholar PubMed

AndersonP. D., DooleyJ. and MeijerH. E. H., “Viscoelastic Effects in Multilayer Polymer Extrusion”, Appl. Rheol., 16, 198–205 (2006)10.1515/arh-2006-0014Search in Google Scholar

AndrewsJ. H., CrescimannoM., DawsonN. J., MaoG., PetrusJ. B., SingerK. D., BaerE. and SongH., “Folding Flexible Co-Extruded All-Polymer Multilayer Distributed Feedback Films to Control Lasing”, Optics Express, 20, 15580–15588 (2012) 10.1364/OE.20.015580Search in Google Scholar PubMed

BairdD. G., CollaisD. I.: Polymer Processing: Principles and Design, Wiley-Interscience, New York (1998)Search in Google Scholar

BarnesH. A., HuttonJ. F. and WaltersK.: An Introduction to Rheology, Elsevier, New York (1989)Search in Google Scholar

BorzacchielloD., LericheE., BlottiereB. and GuilletJ., “On the Mechanism Of Viscoelastic Encapsulation Of Fluid Layers In Polymer Coextrusion”, J. Rheol., 58, 493–512 (2014) 10.1122/1.4865817Search in Google Scholar

CoyleD. J., MacoskoC. W., and ScrivenL. E., “Stability of Symmetric Film-Splitting between Counter-Rotating Cylinders”, J. Fluid Mech., 216, 437–459 (1990) 10.1017/S0022112090000490Search in Google Scholar

Dow Global Technology, U.S. Patent Application 20070184259 (2007)Search in Google Scholar

FarrisR. J., “Prediction of the Viscosity of Multimodal Suspensions from Unimodal Viscosity Data”, Trans. Soc. Rheol., 12, 281–301 (1968) 10.1122/1.549109Search in Google Scholar

FrankelN. A., AcrivosA., “Constitutive Equation for a Dilute Emulsion,J. Fluid Mech.44, 65–78 (1970) 10.1017/S0022112070001696Search in Google Scholar

GrizzutiN., BuonocoreG. and IorioG., “Viscous Behavior and Mixing Rules for an Immiscible Model Polymer Blend”, J. Rheol.44, 149–164 (2000) 10.1122/1.551073Search in Google Scholar

HanC.D., “Study of Bicomponent Coextrusion of Molten Polymers”, J. Appl. Polym. Sci., 17, 1289–1303 (1973) 10.1002/app.1973.070170422Search in Google Scholar

HanemannT., HeldeleR., MuellerT. and HausseltJ., “Influence of Stearic Acid Concentration on the Processin of ZrO2-Containing Feedstocks Suitable for Micropowder Injection Molding”, Int. J. Applied Ceramic Techn., 8, 865–872 (2011) 10.1111/j.1744-7402.2010.02519.xSearch in Google Scholar

HannachiA., MitsoulisE., “Sheet Coextrusion of Polymer Solutions and Melts: Comparison between Simulation and Experiments”, Adv. Polym. Technol., 12, 217–231 (1993) 10.1002/adv.1993.060120301Search in Google Scholar

KimH., AbdalaA. A. and MacoskoC. W., “Graphene/Polymer Nanocomposites”, Macromolecules, 43, 6515–6530 (2010) 10.1021/ma100572eSearch in Google Scholar

KriegerI. M., DoughertyT. J., “A Mechanism for Non-Newtonian Flow in Suspensions of Rigid Spheres”, Trans. Soc. Rheol., 3, 137–152 (1959) 10.1122/1.548848Search in Google Scholar

LamnawarK., MaazouzA., “Rheology and Morphology of Multilayer Reactive Polymers: Effect of Interfacial Area in Interdiffusion/Reaction Phenomena”, Rheol. Acta, 47, 383–397 (2008) 10.1007/s00397-007-0244-1Search in Google Scholar

MahdaouiO., LaureP. and AggasantJ.-F., “Numerical Investigations Of Polyester Coextrusion Instabilities”, J. Non-Newtonian Fluid Mech., 195, 67–76 (2013). 10.1016/j.jnnfm.2012.12.014Search in Google Scholar

MaoG., AndrewsJ.CrescimannoM., SingerK. D., BaerE., HiltnerA., SongH. and ShakyaB., “Co-Extruded Mechanically Tunable Multilayer Elastomer Laser”, Optical Materials Express, 1, 108–114 (2011)10.1364/OME.1.000108Search in Google Scholar

MrozekR. A., ColeP. J., MondyL. A., RaoR. R., BiegL. F. and LenhartJ. L., “Highly Conductive, Melt Processable Polymer Composites Based on Nickel and Low Melting Eutectic Metal”, Polymer, 51, 2954–2958 (2010) 10.1016/j.polymer.2010.04.067Search in Google Scholar

MussonL. C., “Two-Layer Slot Coating”, Dissertation, University of Minnesota, Minneapolis (2001)Search in Google Scholar

NazarenkoS., HiltnerA. and BaerE., “Polymer Microlayer Structures with Anisotropic Conductivity”, J. Materials Sci., 34, 1461–1470 (1999) 10.1023/A:1004527205239Search in Google Scholar

RaoR. R., MondyL. A., BaerT. A., NobleD. R., BrooksC. F. and HopkinsM. M., “eBook Chapter 3D Numerical Modelling of Mould Filling of a Coat Hanger Distributer and Rectangular Cavity”, in Numerical Modelling, Tech - Open Access Publisher, Rijeka, Croatia, (2012a), http://cdn.intechopen.com/pdfs/33076.pdf10.5772/37666Search in Google Scholar

RaoR. R., MondyL. A., NobleD. R., MoffatH. K., AdolfD. B. and NotzP. K., “A Level Set Method to Study Foam Processing: A Validation Study”, Int. J. Numer. Meth. Fluids, 68, 1362–1392 (2012b) 10.1002/fld.2671Search in Google Scholar

RaoR. R., MondyL., CollinsR., BaerT., MrozekR., SchunkP. R., HopkinsM. and LenhartJ., “Finite Element Analysis of Multilayer Co-Extrusion”, SAND2011–6136, Sandia National Laboratories, Albuquerque (2011) http://prod.sandia.gov/techlib/access-control.cgi/2011/116136.pdf10.2172/1029813Search in Google Scholar

SandlerJ., ShafferM. S. P., PrasseT., BauhoferW., SchulteK. and WindleA. H., “Development of a Dispersion Process for Carbon Nanotubes in an Epoxy Matrix and the Resulting Electrical Properties”, Polymer, 40, 5967–5971 (1999) 10.1016/S0032-3861(99)00166-4Search in Google Scholar

SchunkP. R., SackingerP. A., RaoR. R., ChenK. S., BaerT. A., LabrecheD. A., SunA. C., HopkinsM. M., SubiaS. R., MoffatH. K., SecorR. B., RoachR. A., WilkesE. D., NobleD. R., HopkinsP. L., NotzP. K. and RobertsS. A.: GOMA 6.0: An Open Source Full-Newton Finite Element Program for Free and Moving Boundary Problems with Coupled Fluid/Solid Momentum, Energy, Mass, and Chemical Species Transport, Sandia National Laboratories, Albuquerque, NM (2014), http://goma.github.io/Search in Google Scholar

SchunkP. R., SackingerP. A., RaoR. R., ChenK. S., BaerT. A., LabrecheD. A., SunA. C., HopkinsM. M, SubiaS. R., MoffatH. K., SecorR. B., RoachR. A., WilkesE. D., NobleD. R., HopkinsP. L., NotzP. K. and RobertS. A.: GOMA 6.0 – A Full-Newton Finite Element Program for Free and Moving Boundary Problems with Coupled Fluid/Solid Momentum, Energy, Mass, and Chemical Species Transport: User's Guide, Sandia National Laboratories, SAND2013–1844, Sandia National Laboratories, Albuquerque (2013)10.2172/1089869Search in Google Scholar

SethianJ.A.: Level Set Methods and Fast Marching Methods, 2nd Edition, Vol. 3, Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, New York, USA (1999)Search in Google Scholar

ShakoorA., ZahraR. T. and HafeezA., “Morphological, Thermal, and Conductivity Studies of Poly(methyl methacrylate)/Polyaniline Dodecylbenzenesulfonate Blends”, Poly. Sci., Ser. A51, 898–903 (2009)10.1134/S0965545X09080082Search in Google Scholar

SongJ. H., EvansJ. R. G., “Ultrafine Ceramic Powder Injection Molding: The Role of Dispersants”, J. Rheol., 40, 131–152 (1996) 10.1122/1.550737Search in Google Scholar

SorensenD. C., LehoucqR. B., YangC. and MaschhoffK., ARPACK and P_ARPACK, Rice University (2008) http://www.caam.rice.edu/software/ARPACK/Search in Google Scholar

TaoW. H., ChenC., HoC. E., ChenW. T. and KaoC. R., “Selective Interfacial Reaction between Ni and Eutectic BiSn Lead-Free Solder”, Chem. Mater., 13, 1051–1056 (2001). 10.1021/cm000803lSearch in Google Scholar

ThomasD. G., “Transport Characteristics of Suspension.8. A Note on Viscosity of Newtonian Suspensions of Uniform Spherical Particles”, J. Colloid Science, 20, 267–277 (1965) 10.1016/0095-8522(65)90016-4Search in Google Scholar

ValetteR., LaureP., DemayY. and AgassantJ.-F., “Convective Linear Stability Analysis of Two-Layer Coextrusion Flow for Molten Polymers”, J. Non-Newtonian Fluid Mech., 121, 41–53 (2004) 10.1016/j.jnnfm.2004.04.002Search in Google Scholar

ValetteR., LaureP., DemayY. and FortinA., “Convective Instabilities in Coextrusion Process,Int. Polym. Proc., 16, 192–197 (2001) 10.3139/217.1635Search in Google Scholar

ViaM. D., KingJ. A., KeithJ. M. and BoguckiG. R., “Electrical Conductivity Modeling of Carbon Black/Polycarbonate, Carbon Nanotube/Polycarbonate, and Exfoliated Graphite Nanoplatelet/Polycarbonate Composites”, J. Appl. Polym. Sci., 124, 182–189 (2012) 10.1002/app.35096Search in Google Scholar

WagnerJ.Jr.: Multilayer Flexible Packaging Technology and Applications for the Food, Personal Care, and Over-the-Counter Pharmaceutical Industries, Elsevier Science, Burlington (2010)Search in Google Scholar

WilsonG. M., KhomamiB., “An Experimental Investigation of the Interfacial Instabilities in Multilayer Flow of Viscoelastic Fluids. 1. Incompatible Polymer Systems”, J. Non-Newtonian Fluid Mech., 45, 355–384 (1992) 10.1016/0377-0257(92)80068-9Search in Google Scholar

WindlassH., RajP. M., BalaramanD., BhattacharyaS. K. and TummalaR. R., “Colloidal Processing of Polymer Ceramic Nanocomposite Integral Capacitors”, IEEE Trans. Electron. Packag. Manuf., 26, 100–105 (2003) 10.1109/TEPM.2003.817719Search in Google Scholar

WuJ., BhattacharyaS., PramanikR. and WongC. P., “High Dielectric Constant Polymer-Ceramic (Epoxy Varnish-Barium Titanate) Nanocomposites at Moderate Filler Loadings for Embedded Capacitors”, J. Electron. Mater., 35, 2009–2015 (2006) 10.1007/s11664-006-0307-6Search in Google Scholar

XuS., WenM., GuoS., WangM., DuQ., ShenJ., ZhangY. and JiangS., “Structure and Properties of Electrically Conducting Composites Consisting of Alternating Layers of Pure Polypropylene and Polypropylene with a Carbon Black Filler”, Polymer, 49, 4861–4870 (2008) 10.1016/j.polymer.2008.08.056Search in Google Scholar

YihC. S., “Instability due to Viscosity Stratification,J. Fluid Mech., 27, 337–352 (1967) 10.1017/S0022112067000357Search in Google Scholar

YoonC.-B., LeeS.-H., LeeS.-M. and KimH.-E., “Multilayer Bender-Type PZT-PZN Actuator by Co-Extrusion Process”, J. European Ceramic Soc., 26, 2345–2348 (2006) 10.1016/j.jeurceramsoc.2005.04.003Search in Google Scholar

YuT. C., HanC. D., “Stratified 2-Phase Flow of Molten Polymers,J. Appl. Polym. Sci., 17, 1203–1225 (1972) 10.1002/app.1973.070170417Search in Google Scholar

ZhaoR., MacoskoC. W., “Slip at Polymer-Polymer Interfaces: Rheological Measurements on Coextruded Multilayers,J. Rheol., 46, 145–167 (2002) 10.1122/1.1427912Search in Google Scholar

Received: 2013-10-02
Accepted: 2014-12-23
Published Online: 2015-05-05
Published in Print: 2015-05-29

© 2015, Carl Hanser Verlag, Munich

Articles in the same Issue

  1. Contents
  2. Contents
  3. Regular Contributed Articles
  4. Multilayer Coextrusion of Polymer Composites to Develop Organic Capacitors
  5. Heat Flow Analysis and Efficiency Optimization of Rotational Molding Equipment for Large Plastic Products
  6. Thermorheology of Polyethylene Wax Modified Sulfur Asphalt
  7. Thermoplastic Cellulose Stearate and Cellulose Laurate: Melt Rheology, Processing and Application Potential
  8. Crystallization Kinetics for PP/EPDM/Nano-CaCO3 Composites – The Influence of Nanoparticles Distribution
  9. The Effect of ZnO Nanoparticle Filler on the Attenuation of ZnO/PCL Nanocomposites Using Microstrip Line at Microwave Frequency
  10. Synthesis and Properties of Nitrogen Heterocycle-Functionalized Core-Shell Hyperbranched Polyester
  11. Morphology Tuning of Conducting Polyaniline via Static, Liquid-Liquid Interfacial Polymerization Process and its Application for Optical pH Sensing
  12. Tuning of Final Performances of Soybean Oil–Based Polymer Nanocomposites: Effect of Styryl/Oil Functionalized Intercalant of Montmorillonite Reinforcer
  13. Processability, Thermal and Mechanical Properties of Rigid PVC/Kaolin Coated with Liquid Macromolecular Modifier Composites
  14. Numerical Analysis and Evaluation of Process and Geometry Specific Transient Temperature Fields for a New Variation of Gas-Assisted Injection Molding
  15. Effect of Feeding Strategy on the Properties of PP/Recycled EPDM Blends
  16. Analysis of a Single Screw Extruder with a Grooved Plasticating Barrel – Part I: The Melting Model
  17. Melt Elongation Strength and Drawability of LDPE/LLDPE Blends
  18. PPS News
  19. PPS News
  20. Seikei Kakou Abstracts
  21. Seikei Kakou Abstracts
Downloaded on 29.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/217.2872/html
Scroll to top button