Startseite Effect of Alumina Particles Embedded in Natural Rubber Foams on Cell Morphology and Thermo-Mechanical Properties
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of Alumina Particles Embedded in Natural Rubber Foams on Cell Morphology and Thermo-Mechanical Properties

  • N. Tangboriboon , H. Deechaiyapum , K. Petcharoen und A. Sirivat
Veröffentlicht/Copyright: 11. März 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Alumina particles is a ceramic powder used as a dispersed phase or filler to reinforce the mechanical properties and improve thermal properties of natural rubber foams via the vulcanization process at curing temperature 150°C with a two-roll mill. The amount of alumina added in natural rubber foams were varied from 0 to 60 phr on 100 phr of natural rubber in a sulfur curing system. The sodium bicarbonate (NaHCO3) and N,N′-dinitrosopentamethylenetetramine (DNPT) were used as foaming agents. The sponge rubber composite foams were characterized for the microstructure, phase formation, thermal property, particle size distribution, and mechanical property by scanning electron microscope (SEM), X-ray diffraction (XRD), thermogravimetric analyzer (TGA), particle size analyzer, and compression set testing. The fabricated sponge rubber composite foams have distinctive characteristics such as light weight and good mechanical and thermal properties suitable for energy absorption such as thermal, noise, and vibration.


* Mail address: Anuvat Sirivat, Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, 10330, Thailand. E-mail:

References

Al-Homoud, M. S., “Performance Characteristic and Practical Applications of Common Building Thermal Insulation Material”, Build. Environ., 40, 353366 (2005) 10.1016/j.buildenv.2004.05.013Suche in Google Scholar

Ansarifar, A., Shiah, S. F. and Bennett, M., “Optimising the Chemical Bonding between Silanised Silica Nanofiller and Natural Rubber and Assessing its Effects on the Properties of the Rubber”, Int. J. Adhes. Adhes., 26, 454463 (2006) 10.1016/j.ijadhadh.2005.06.008Suche in Google Scholar

Ariff, Z. M., Zakaria, Z., Tay, L. H. and Lee, S. Y., “Effect of Foaming Temperature and Rubber Grades on Properties of Natural Rubber Foams”, J. Appl. Polym. Sci., 107, 25312538 (2008) 10.1002/app.27375Suche in Google Scholar

Callister, W. D.: Materials Science and Engineering: An Introduction, 7th Edition, John Wiley & Sons, Hoboken (2007)Suche in Google Scholar

Datta, D., Kirchhoff, J., Mewes, D., Herrmann, W. and Galinsky, G., “An Ultrasonic Technique to Monitor the Blowing Process in Sponge Rubbers”, Polym. Test., 21, 209216 (2002) 10.1016/S0142-9418(01)00072-1Suche in Google Scholar

Ismail, Y. A., Shin, S. R., Shin, K. M., Yoon, S. G., Shon, K. and Kim, S. L., “Electrochemical Actuation in Chitosan/Polyaniline Microfibers for Artificial Muscles Fabricated Using an in situ Polymerization”, Sen. Act. B., 129, 834840 (2008) 10.1016/j.snb.2007.09.083Suche in Google Scholar

Kansal, P., Laine, R. M., “Processable Mullite Precursor Prepared by Reacting Silica and Aluminum Hydroxide with Triethanolamine in Ethylene Glycol: Structural Evolution on Pyrolysis”, J. Am. Ceram. Soc., 80, 25972606 (1997) 10.1111/j.1151-2916.1997.tb03162.xSuche in Google Scholar

Lee, E. K., Choi, S. Y., “Preparation and Characterization of Natural Rubber Foams: Effects of Foaming Temperature and Carbon Black Content”, Korean J. Chem. Eng., 24, 10701075 (2007) 10.1007/s11814-007-0123-6Suche in Google Scholar

Najib, N. N., Ariff, Z. M., Bakar, A. A. and Sipaut, C. S., “Correlation between the Acoustic and Dynamic Mechanical Properties of Natural Rubber Foam: Effect of Foaming Temperature”, Mater. Des., 32, 505511 (2011) 10.1016/j.matdes.2010.08.030Suche in Google Scholar

Najidha, S., Saxena, N. S., Sreeja, R., Unnithan, C. H. and Predeep, P., “Optical and Electrical Characterization of SbCl5 Doped cis-1, 4-Polyisoprene”, Mater. Lett., 59, 34313436 (2005) 10.1016/j.matlet.2005.06.021Suche in Google Scholar

Nam, J. D., Choi, H. R., Tak, Y. S. and Kim, K. J., “Novel Electroactive, Silicate Nanocomposites Prepared to Be Used as Actuators and Artificial Muscles”, Sens. Act. A., 105, 8390 (2003) 10.1016/S0924-4247(03)00066-9Suche in Google Scholar

Pugh, R. J., “Foaming, Foam Films, Antifoaming and Defoaming”, Adv. Coll. Interf. Sci., 64, 67142 (1996) 10.1016/0001-8686(95)00280-4Suche in Google Scholar

Rozenberg, B. A., Tenne, R., “Polymer-Assisted Fabrication of Nanoparticles and Nanocomposites”, Prog. Polym. Sci., 33, 40112 (2008) 10.1016/j.progpolymsci.2007.07.004Suche in Google Scholar

Tangboriboon, N., Chaisakrenon, S., Banchong, A., Kunanuraksapong, R. and Sirivat, A., “Mechanical and Electrical Properties of Alumina/Natural Rubber Composites”, J. Elast. Plast., 44, 2141 (2012) 10.1177/0095244311416579Suche in Google Scholar

Tangboriboon, N., Wongpinthong, P., Sirivat, A. and Kunanuraksapong, R., “Electroactive Alumina Particles Embedded in an Acrylic Elastomer”, Polym. Compos., 32, 4451 (2011) 10.1002/pc.21014Suche in Google Scholar

Vinod, V. S., Varghese, S. and Kuriakose, B., “Degradation Behavior of Natural Rubber-Aluminium Powder Composites: Effect of Heat, Ozone and High Energy Radiation”, Polym. Degrad. Stab., 75, 405412 (2002) 10.1016/S0141-3910(01)00228-2Suche in Google Scholar

Received: 2014-04-24
Accepted: 2014-09-22
Published Online: 2015-03-11
Published in Print: 2015-03-02

© 2015, Carl Hanser Verlag, Munich

Heruntergeladen am 29.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/217.2966/pdf
Button zum nach oben scrollen