Multilayer Coextrusion of Polymer Composites to Develop Organic Capacitors
-
L. Mondy
, R. Mrozek , R. Rao , J. Lenhart , L. Bieg , S. Spangler , M. Stavig , J. Schroeder , M. Winter , C. Diantonio und R. Collins
Abstract
Multilayer coextrusion is applied to produce a tape containing layers of alternating electrical properties to demonstrate the potential for using coextrusion to manufacture capacitors. To obtain the desired properties, we develop two filled polymer systems, one for conductive layers and one for dielectric layers. We describe numerical models used to help determine the material and processing parameters that impact processing and layer stability. These models help quantify the critical ratios of densities and viscosities of the two layers to maintain stable layers, as well as the effect of increasing the flow rate of one of the two materials. The conducting polymer is based on polystyrene filled with a blend of low-melting-point eutectic metal and nickel particulate filler, as described by Mrozek et al. (2010). The appropriate concentrations of fillers are determined by balancing measured conductivity with processability in a twin screw extruder. Based on results of the numerical models and estimates of the viscosity of emulsions and suspensions, a dielectric layer composed of polystyrene filled with barium titanate is formulated. Despite the fact that the density of the dielectric filler is less than the metallic filler of the conductive phase, as well as rheological measurements that later showed that the dielectric formulation is not an ideal match to the viscosity of the conductive material, the two materials can be successfully coextruded if the flow rates of the two materials are not identical. A measurable capacitance of the layered structure is obtained.
References
3M, U.S. Patent 6837698 (2005)Suche in Google Scholar
5N Plus, Product Data Sheet, MCP 137/Metspec 281 Alloy (2014)Suche in Google Scholar
http://www.5nplus.com/files/4413/9108/3788/Alloy_137_Tech_Data_Sheet_web.pdfSuche in Google Scholar
AlbaK., LaureP. and KhayatR. E., “Transient Two-Layer Thin-Film Flow inside a Channel”, Phys. Rev. E84, 026320 (2011) 10.1103/PhysRevE.84.026320Suche in Google Scholar PubMed
AndersonP. D., DooleyJ. and MeijerH. E. H., “Viscoelastic Effects in Multilayer Polymer Extrusion”, Appl. Rheol., 16, 198–205 (2006)10.1515/arh-2006-0014Suche in Google Scholar
AndrewsJ. H., CrescimannoM., DawsonN. J., MaoG., PetrusJ. B., SingerK. D., BaerE. and SongH., “Folding Flexible Co-Extruded All-Polymer Multilayer Distributed Feedback Films to Control Lasing”, Optics Express, 20, 15580–15588 (2012) 10.1364/OE.20.015580Suche in Google Scholar PubMed
BairdD. G., CollaisD. I.: Polymer Processing: Principles and Design, Wiley-Interscience, New York (1998)Suche in Google Scholar
BarnesH. A., HuttonJ. F. and WaltersK.: An Introduction to Rheology, Elsevier, New York (1989)Suche in Google Scholar
BorzacchielloD., LericheE., BlottiereB. and GuilletJ., “On the Mechanism Of Viscoelastic Encapsulation Of Fluid Layers In Polymer Coextrusion”, J. Rheol., 58, 493–512 (2014) 10.1122/1.4865817Suche in Google Scholar
CoyleD. J., MacoskoC. W., and ScrivenL. E., “Stability of Symmetric Film-Splitting between Counter-Rotating Cylinders”, J. Fluid Mech., 216, 437–459 (1990) 10.1017/S0022112090000490Suche in Google Scholar
Dow Global Technology, U.S. Patent Application 20070184259 (2007)Suche in Google Scholar
FarrisR. J., “Prediction of the Viscosity of Multimodal Suspensions from Unimodal Viscosity Data”, Trans. Soc. Rheol., 12, 281–301 (1968) 10.1122/1.549109Suche in Google Scholar
FrankelN. A., AcrivosA., “Constitutive Equation for a Dilute Emulsion,” J. Fluid Mech.44, 65–78 (1970) 10.1017/S0022112070001696Suche in Google Scholar
GrizzutiN., BuonocoreG. and IorioG., “Viscous Behavior and Mixing Rules for an Immiscible Model Polymer Blend”, J. Rheol.44, 149–164 (2000) 10.1122/1.551073Suche in Google Scholar
HanC.D., “Study of Bicomponent Coextrusion of Molten Polymers”, J. Appl. Polym. Sci., 17, 1289–1303 (1973) 10.1002/app.1973.070170422Suche in Google Scholar
HanemannT., HeldeleR., MuellerT. and HausseltJ., “Influence of Stearic Acid Concentration on the Processin of ZrO2-Containing Feedstocks Suitable for Micropowder Injection Molding”, Int. J. Applied Ceramic Techn., 8, 865–872 (2011) 10.1111/j.1744-7402.2010.02519.xSuche in Google Scholar
HannachiA., MitsoulisE., “Sheet Coextrusion of Polymer Solutions and Melts: Comparison between Simulation and Experiments”, Adv. Polym. Technol., 12, 217–231 (1993) 10.1002/adv.1993.060120301Suche in Google Scholar
KimH., AbdalaA. A. and MacoskoC. W., “Graphene/Polymer Nanocomposites”, Macromolecules, 43, 6515–6530 (2010) 10.1021/ma100572eSuche in Google Scholar
KriegerI. M., DoughertyT. J., “A Mechanism for Non-Newtonian Flow in Suspensions of Rigid Spheres”, Trans. Soc. Rheol., 3, 137–152 (1959) 10.1122/1.548848Suche in Google Scholar
LamnawarK., MaazouzA., “Rheology and Morphology of Multilayer Reactive Polymers: Effect of Interfacial Area in Interdiffusion/Reaction Phenomena”, Rheol. Acta, 47, 383–397 (2008) 10.1007/s00397-007-0244-1Suche in Google Scholar
MahdaouiO., LaureP. and AggasantJ.-F., “Numerical Investigations Of Polyester Coextrusion Instabilities”, J. Non-Newtonian Fluid Mech., 195, 67–76 (2013). 10.1016/j.jnnfm.2012.12.014Suche in Google Scholar
MaoG., AndrewsJ.CrescimannoM., SingerK. D., BaerE., HiltnerA., SongH. and ShakyaB., “Co-Extruded Mechanically Tunable Multilayer Elastomer Laser”, Optical Materials Express, 1, 108–114 (2011)10.1364/OME.1.000108Suche in Google Scholar
MrozekR. A., ColeP. J., MondyL. A., RaoR. R., BiegL. F. and LenhartJ. L., “Highly Conductive, Melt Processable Polymer Composites Based on Nickel and Low Melting Eutectic Metal”, Polymer, 51, 2954–2958 (2010) 10.1016/j.polymer.2010.04.067Suche in Google Scholar
MussonL. C., “Two-Layer Slot Coating”, Dissertation, University of Minnesota, Minneapolis (2001)Suche in Google Scholar
NazarenkoS., HiltnerA. and BaerE., “Polymer Microlayer Structures with Anisotropic Conductivity”, J. Materials Sci., 34, 1461–1470 (1999) 10.1023/A:1004527205239Suche in Google Scholar
RaoR. R., MondyL. A., BaerT. A., NobleD. R., BrooksC. F. and HopkinsM. M., “eBook Chapter 3D Numerical Modelling of Mould Filling of a Coat Hanger Distributer and Rectangular Cavity”, in Numerical Modelling, Tech - Open Access Publisher, Rijeka, Croatia, (2012a), http://cdn.intechopen.com/pdfs/33076.pdf10.5772/37666Suche in Google Scholar
RaoR. R., MondyL. A., NobleD. R., MoffatH. K., AdolfD. B. and NotzP. K., “A Level Set Method to Study Foam Processing: A Validation Study”, Int. J. Numer. Meth. Fluids, 68, 1362–1392 (2012b) 10.1002/fld.2671Suche in Google Scholar
RaoR. R., MondyL., CollinsR., BaerT., MrozekR., SchunkP. R., HopkinsM. and LenhartJ., “Finite Element Analysis of Multilayer Co-Extrusion”, SAND2011–6136, Sandia National Laboratories, Albuquerque (2011) http://prod.sandia.gov/techlib/access-control.cgi/2011/116136.pdf10.2172/1029813Suche in Google Scholar
SandlerJ., ShafferM. S. P., PrasseT., BauhoferW., SchulteK. and WindleA. H., “Development of a Dispersion Process for Carbon Nanotubes in an Epoxy Matrix and the Resulting Electrical Properties”, Polymer, 40, 5967–5971 (1999) 10.1016/S0032-3861(99)00166-4Suche in Google Scholar
SchunkP. R., SackingerP. A., RaoR. R., ChenK. S., BaerT. A., LabrecheD. A., SunA. C., HopkinsM. M., SubiaS. R., MoffatH. K., SecorR. B., RoachR. A., WilkesE. D., NobleD. R., HopkinsP. L., NotzP. K. and RobertsS. A.: GOMA 6.0: An Open Source Full-Newton Finite Element Program for Free and Moving Boundary Problems with Coupled Fluid/Solid Momentum, Energy, Mass, and Chemical Species Transport, Sandia National Laboratories, Albuquerque, NM (2014), http://goma.github.io/Suche in Google Scholar
SchunkP. R., SackingerP. A., RaoR. R., ChenK. S., BaerT. A., LabrecheD. A., SunA. C., HopkinsM. M, SubiaS. R., MoffatH. K., SecorR. B., RoachR. A., WilkesE. D., NobleD. R., HopkinsP. L., NotzP. K. and RobertS. A.: GOMA 6.0 – A Full-Newton Finite Element Program for Free and Moving Boundary Problems with Coupled Fluid/Solid Momentum, Energy, Mass, and Chemical Species Transport: User's Guide, Sandia National Laboratories, SAND2013–1844, Sandia National Laboratories, Albuquerque (2013)10.2172/1089869Suche in Google Scholar
SethianJ.A.: Level Set Methods and Fast Marching Methods, 2nd Edition, Vol. 3, Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, New York, USA (1999)Suche in Google Scholar
ShakoorA., ZahraR. T. and HafeezA., “Morphological, Thermal, and Conductivity Studies of Poly(methyl methacrylate)/Polyaniline Dodecylbenzenesulfonate Blends”, Poly. Sci., Ser. A51, 898–903 (2009)10.1134/S0965545X09080082Suche in Google Scholar
SongJ. H., EvansJ. R. G., “Ultrafine Ceramic Powder Injection Molding: The Role of Dispersants”, J. Rheol., 40, 131–152 (1996) 10.1122/1.550737Suche in Google Scholar
SorensenD. C., LehoucqR. B., YangC. and MaschhoffK., ARPACK and P_ARPACK, Rice University (2008) http://www.caam.rice.edu/software/ARPACK/Suche in Google Scholar
TaoW. H., ChenC., HoC. E., ChenW. T. and KaoC. R., “Selective Interfacial Reaction between Ni and Eutectic BiSn Lead-Free Solder”, Chem. Mater., 13, 1051–1056 (2001). 10.1021/cm000803lSuche in Google Scholar
ThomasD. G., “Transport Characteristics of Suspension.8. A Note on Viscosity of Newtonian Suspensions of Uniform Spherical Particles”, J. Colloid Science, 20, 267–277 (1965) 10.1016/0095-8522(65)90016-4Suche in Google Scholar
ValetteR., LaureP., DemayY. and AgassantJ.-F., “Convective Linear Stability Analysis of Two-Layer Coextrusion Flow for Molten Polymers”, J. Non-Newtonian Fluid Mech., 121, 41–53 (2004) 10.1016/j.jnnfm.2004.04.002Suche in Google Scholar
ValetteR., LaureP., DemayY. and FortinA., “Convective Instabilities in Coextrusion Process,” Int. Polym. Proc., 16, 192–197 (2001) 10.3139/217.1635Suche in Google Scholar
ViaM. D., KingJ. A., KeithJ. M. and BoguckiG. R., “Electrical Conductivity Modeling of Carbon Black/Polycarbonate, Carbon Nanotube/Polycarbonate, and Exfoliated Graphite Nanoplatelet/Polycarbonate Composites”, J. Appl. Polym. Sci., 124, 182–189 (2012) 10.1002/app.35096Suche in Google Scholar
WagnerJ.Jr.: Multilayer Flexible Packaging Technology and Applications for the Food, Personal Care, and Over-the-Counter Pharmaceutical Industries, Elsevier Science, Burlington (2010)Suche in Google Scholar
WilsonG. M., KhomamiB., “An Experimental Investigation of the Interfacial Instabilities in Multilayer Flow of Viscoelastic Fluids. 1. Incompatible Polymer Systems”, J. Non-Newtonian Fluid Mech., 45, 355–384 (1992) 10.1016/0377-0257(92)80068-9Suche in Google Scholar
WindlassH., RajP. M., BalaramanD., BhattacharyaS. K. and TummalaR. R., “Colloidal Processing of Polymer Ceramic Nanocomposite Integral Capacitors”, IEEE Trans. Electron. Packag. Manuf., 26, 100–105 (2003) 10.1109/TEPM.2003.817719Suche in Google Scholar
WuJ., BhattacharyaS., PramanikR. and WongC. P., “High Dielectric Constant Polymer-Ceramic (Epoxy Varnish-Barium Titanate) Nanocomposites at Moderate Filler Loadings for Embedded Capacitors”, J. Electron. Mater., 35, 2009–2015 (2006) 10.1007/s11664-006-0307-6Suche in Google Scholar
XuS., WenM., GuoS., WangM., DuQ., ShenJ., ZhangY. and JiangS., “Structure and Properties of Electrically Conducting Composites Consisting of Alternating Layers of Pure Polypropylene and Polypropylene with a Carbon Black Filler”, Polymer, 49, 4861–4870 (2008) 10.1016/j.polymer.2008.08.056Suche in Google Scholar
YihC. S., “Instability due to Viscosity Stratification,” J. Fluid Mech., 27, 337–352 (1967) 10.1017/S0022112067000357Suche in Google Scholar
YoonC.-B., LeeS.-H., LeeS.-M. and KimH.-E., “Multilayer Bender-Type PZT-PZN Actuator by Co-Extrusion Process”, J. European Ceramic Soc., 26, 2345–2348 (2006) 10.1016/j.jeurceramsoc.2005.04.003Suche in Google Scholar
YuT. C., HanC. D., “Stratified 2-Phase Flow of Molten Polymers,” J. Appl. Polym. Sci., 17, 1203–1225 (1972) 10.1002/app.1973.070170417Suche in Google Scholar
ZhaoR., MacoskoC. W., “Slip at Polymer-Polymer Interfaces: Rheological Measurements on Coextruded Multilayers,” J. Rheol., 46, 145–167 (2002) 10.1122/1.1427912Suche in Google Scholar
© 2015, Carl Hanser Verlag, Munich
Artikel in diesem Heft
- Contents
- Contents
- Regular Contributed Articles
- Multilayer Coextrusion of Polymer Composites to Develop Organic Capacitors
- Heat Flow Analysis and Efficiency Optimization of Rotational Molding Equipment for Large Plastic Products
- Thermorheology of Polyethylene Wax Modified Sulfur Asphalt
- Thermoplastic Cellulose Stearate and Cellulose Laurate: Melt Rheology, Processing and Application Potential
- Crystallization Kinetics for PP/EPDM/Nano-CaCO3 Composites – The Influence of Nanoparticles Distribution
- The Effect of ZnO Nanoparticle Filler on the Attenuation of ZnO/PCL Nanocomposites Using Microstrip Line at Microwave Frequency
- Synthesis and Properties of Nitrogen Heterocycle-Functionalized Core-Shell Hyperbranched Polyester
- Morphology Tuning of Conducting Polyaniline via Static, Liquid-Liquid Interfacial Polymerization Process and its Application for Optical pH Sensing
- Tuning of Final Performances of Soybean Oil–Based Polymer Nanocomposites: Effect of Styryl/Oil Functionalized Intercalant of Montmorillonite Reinforcer
- Processability, Thermal and Mechanical Properties of Rigid PVC/Kaolin Coated with Liquid Macromolecular Modifier Composites
- Numerical Analysis and Evaluation of Process and Geometry Specific Transient Temperature Fields for a New Variation of Gas-Assisted Injection Molding
- Effect of Feeding Strategy on the Properties of PP/Recycled EPDM Blends
- Analysis of a Single Screw Extruder with a Grooved Plasticating Barrel – Part I: The Melting Model
- Melt Elongation Strength and Drawability of LDPE/LLDPE Blends
- PPS News
- PPS News
- Seikei Kakou Abstracts
- Seikei Kakou Abstracts
Artikel in diesem Heft
- Contents
- Contents
- Regular Contributed Articles
- Multilayer Coextrusion of Polymer Composites to Develop Organic Capacitors
- Heat Flow Analysis and Efficiency Optimization of Rotational Molding Equipment for Large Plastic Products
- Thermorheology of Polyethylene Wax Modified Sulfur Asphalt
- Thermoplastic Cellulose Stearate and Cellulose Laurate: Melt Rheology, Processing and Application Potential
- Crystallization Kinetics for PP/EPDM/Nano-CaCO3 Composites – The Influence of Nanoparticles Distribution
- The Effect of ZnO Nanoparticle Filler on the Attenuation of ZnO/PCL Nanocomposites Using Microstrip Line at Microwave Frequency
- Synthesis and Properties of Nitrogen Heterocycle-Functionalized Core-Shell Hyperbranched Polyester
- Morphology Tuning of Conducting Polyaniline via Static, Liquid-Liquid Interfacial Polymerization Process and its Application for Optical pH Sensing
- Tuning of Final Performances of Soybean Oil–Based Polymer Nanocomposites: Effect of Styryl/Oil Functionalized Intercalant of Montmorillonite Reinforcer
- Processability, Thermal and Mechanical Properties of Rigid PVC/Kaolin Coated with Liquid Macromolecular Modifier Composites
- Numerical Analysis and Evaluation of Process and Geometry Specific Transient Temperature Fields for a New Variation of Gas-Assisted Injection Molding
- Effect of Feeding Strategy on the Properties of PP/Recycled EPDM Blends
- Analysis of a Single Screw Extruder with a Grooved Plasticating Barrel – Part I: The Melting Model
- Melt Elongation Strength and Drawability of LDPE/LLDPE Blends
- PPS News
- PPS News
- Seikei Kakou Abstracts
- Seikei Kakou Abstracts