Flow Visualisation in Co-rotating Twin Screw Extruders: Positron Emission Particle Tracking and Numerical Particle Trajectories
-
J. Diemer
, C. Chilles , J. Colbert , T. Miri , A. Ingram , P. David , A. Sarhangi Fard und P. D. Anderson
Abstract
Co-rotating twin-screw extruders are widely used compounding machines. They are mainly configured based on extensive experience and iterative approaches to optimise output and composite quality. The visualisation technology developed in the EU-project PEPTFlow allows visualisation of composite flow in twin-screw extruders under realistic processing conditions by tracking radioactive tracer particles in the polymer melt, using a specially developed camera system. This new approach allows polymer flow to be studied in different screw elements and screw configurations under realistic compounding conditions at normal temperatures and melt pressures. The paper presents the latest developments in the camera systems as well as the different ways to use and interpret the results. Detailed analysis of residence times and residence time distributions for standard compound screw elements, like kneading discs, conveying elements and reverse elements are presented. In addition for a better understanding of the flow field inside twin-screw extruders, numerical particle tracking is done. The Stokes equation, using XFEM method, are solved and the numerical RTD's (residence time distribution) are compared for various screw designs.
References
Ding, Y. L., et al., “Solids Motion in Rolling Mode Rotating Drums Operated at Low to Medium Rotational Speeds”, Chem. Eng. Sci., 56, 1769–1780(2001), DOI: http://dx.doi.org/10.1016/S0009-2509(00)00468-1Suche in Google Scholar
Fan, X., et al., “Labelling a Single Particle for Positron Emission Particle Tracking Using Direct Activation and Ion-exchange Techniques”, Nucl. Instrum. Meth. A, 562, 345–350(2006), DOI: http://dx.doi.org/10.1016/j.nima.2006.03.015Suche in Google Scholar
Fishwick, R. P., et al., “Explaining Mass Transfer Observations in Multiphase Stirred Reactors: Particle-liquid Slip Velocity Measurements Using PEPT”, Catalysis Today, 79–80, 195–202(2003), DOI: http://dx.doi.org/10.1016/S0920-5861(03)00005-1Suche in Google Scholar
Glowinski, R., et al., “A Fictitious Domain Method for Dirichlet Problem and Applications”, Comput. Meth. Appl. Mech. Eng., 111, 283–303(1994), DOI: http://dx.doi.org/10.1016/0045-7825(94)90135-XSuche in Google Scholar
Hawkesworth, M. R., et al., “Nonmedical Applications of a Positron Camera”, Nucl. Instrum. Meth. A, 310, 423–434(1991), DOI: http://dx.doi.org/10.1016/0168-9002(91)91073-5Suche in Google Scholar
Ingram, A., et al., “Portable Positron Emission Particle Tracking (PEPT) for Industrial Use”, 12th International Conference on Fluidization – New Horizons in Fluidization Engineering, paper 60, Vancouver (2007)Suche in Google Scholar
Jones, J. R., Bridgwater, J., “A Case Study of Particle Mixing in a Ploughshare Mixer Using Positron Emission Particle Tracking”, Int. J. Miner. Process., 53, 29–38(1998), DOI: http://dx.doi.org/10.1016/S0301-7516(97)00054-9Suche in Google Scholar
Kohlgrüber, K., Bierdel, M.: Co-rotating Twin-screw Extruders: Fundamentals, Technology, and Applications, Hanser Publishers, Munich(2008)10.3139/9783446433410.fmSuche in Google Scholar
Leadbeater, T. W., Parker, D. J., “A Positron Camera with Flexible Geometry for the Study of Industrial Processes”, 5th World Congress on Industrial Process Tomography, Bergen (2007)Suche in Google Scholar
Leadbeater, T. W., Parker, D. J., “A High Speed PC-based Data Acquisition and Control System for Positron Imaging”, Nucl. Instrum. Meth. A, 604, 355–358(2009), DOI: http://dx.doi.org/10.1016/j.nima.2009.01.184Suche in Google Scholar
Parker, D. J., et al., “Developments in Particle Tracking Using the Birmingham Positron Camera”, Nucl. Instrum. Meth. A, 392, 421–426(1997), DOI: http://dx.doi.org/10.1016/S0168-9002(97)00301-XSuche in Google Scholar
Parker, D. J., et al., “Positron Emission Particle Tracking – a Technique for Studying Flow within Engineering Equipment”, Nucl. Instrum. Meth. A, 326, 592–607(1993), DOI: http://dx.doi.org/10.1016/0168-9002(93)90864-ESuche in Google Scholar
Parker, D. J., Fan, X. F., “Positron Emission Particle Tracking – Application and Labelling Techniques”, Particuology, 6, 16–23(2008), DOI: http://dx.doi.org/10.1016/j.cpart.2007.10.004Suche in Google Scholar
Parker, D. J., et al., “Positron Emission Particle Tracking Using the New Birmingham Positron Camera”, Nucl. Instrum. Meth. A, 477, 540–545(2002), DOI: http://dx.doi.org/10.1016/S0168-9002(01)01919-2Suche in Google Scholar
Parker, D. J., et al., “Positron Imaging Techniques for Process Engineering: Recent Developments at Birmingham”, Meas. Sci. Technol., 19, 094004(2008), DOI: http://dx.doi.org/10.1088/0957-0233/19/9/094004Suche in Google Scholar
Sarhangi Fard, A., et al., “Adaptive non-Conformal Mesh Refinement and Extended Finite Element Method for Viscous Flow inside Complex Moving Geometries”, Internat. J. Numer. Methods Fluids, online version (2011), DOI: 10.1002/fld.2595Suche in Google Scholar
Seville, J. P. K., et al., “Chapter 4 Positron Emission Imaging in Chemical Engineering”, in Advances in Chemical Engineering, JinghaiL. (Ed.), Academic Press, New York, p. 149–178(2009)10.1016/S0065-2377(09)03704-1Suche in Google Scholar
Valette, R., et al., “A Direct 3D Numerical Simulation Code for Extrusion and Mixing Processes”, Int. Polym. Proc., 24, 141–147(2009), DOI: http://dx.doi.org/10.3139/217.2207Suche in Google Scholar
Wildman, R. D., et al., “Investigation of Paste Flow Using Positron Emission Particle Tracking”, Powder Technol., 103, 220–229(1999), DOI: http://dx.doi.org/10.1016/S0032-5910(99)00019-4Suche in Google Scholar
© 2011, Carl Hanser Verlag, Munich
Artikel in diesem Heft
- Contents
- Contents
- Regular Contributed Articles
- Applicability of the Impact Response Analysis Method for Reinforced Concrete Beams Mixed with Polyvinyl Alcohol Short Fibers
- Epoxy-Montmorillonite Nanocomposites Applied to Powder Coatings
- Direct Imprinting Using Magnetic Nickel Mold and Electromagnetism Assisted Pressure for Replication of Microstructures
- Automated Mold Heating System Using High Frequency Induction with Feedback Temperature Control
- The Prediction of Bowing Distortion of Film after Transverse Stretching with Consideration of Heated Air Flow in a Tenter
- The Influence of Injection Molding and Injection Compression Molding on Ultra-high Molecular Weight Polyethylene Polymer Microfabrication
- A Design-of-Experiment Study on the Microcellular Extrusion of Sub-critical CO2 Saturated PLA Pellets
- Optimization of Injection Molding Process for SGF and PTFE Reinforced PC Composites Using Response Surface Methodology and Simulated Annealing Approach
- Flow Visualisation in Co-rotating Twin Screw Extruders: Positron Emission Particle Tracking and Numerical Particle Trajectories
- The Influence of Melt and Process Parameters on the Quality and Occurrence of Part Defects in Water-assisted Injection Molded Tubes
- Model and Numerical Simulation for the Second Penetration in Water-assisted Injection Molding
- Influence of Extrusion Conditions on the Rheological Behavior of Nuclear Bituminized Waste Products
- Influence of Dicumyl Peroxide Content on Thermal and Mechanical Properties of Polylactide
- Rapid Communications
- Calculation of Average Residence Time in a Ko-kneader
- PPS-News
- PPS News
Artikel in diesem Heft
- Contents
- Contents
- Regular Contributed Articles
- Applicability of the Impact Response Analysis Method for Reinforced Concrete Beams Mixed with Polyvinyl Alcohol Short Fibers
- Epoxy-Montmorillonite Nanocomposites Applied to Powder Coatings
- Direct Imprinting Using Magnetic Nickel Mold and Electromagnetism Assisted Pressure for Replication of Microstructures
- Automated Mold Heating System Using High Frequency Induction with Feedback Temperature Control
- The Prediction of Bowing Distortion of Film after Transverse Stretching with Consideration of Heated Air Flow in a Tenter
- The Influence of Injection Molding and Injection Compression Molding on Ultra-high Molecular Weight Polyethylene Polymer Microfabrication
- A Design-of-Experiment Study on the Microcellular Extrusion of Sub-critical CO2 Saturated PLA Pellets
- Optimization of Injection Molding Process for SGF and PTFE Reinforced PC Composites Using Response Surface Methodology and Simulated Annealing Approach
- Flow Visualisation in Co-rotating Twin Screw Extruders: Positron Emission Particle Tracking and Numerical Particle Trajectories
- The Influence of Melt and Process Parameters on the Quality and Occurrence of Part Defects in Water-assisted Injection Molded Tubes
- Model and Numerical Simulation for the Second Penetration in Water-assisted Injection Molding
- Influence of Extrusion Conditions on the Rheological Behavior of Nuclear Bituminized Waste Products
- Influence of Dicumyl Peroxide Content on Thermal and Mechanical Properties of Polylactide
- Rapid Communications
- Calculation of Average Residence Time in a Ko-kneader
- PPS-News
- PPS News